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(i) Burgers’ vortex consists of a vortex tube with vorticity ω = (0, 0, ωz) and

ωz =
Γ0

πδ2
exp

[

− r2/δ2
]

, Γ0 = constant ,

which sits in the irrotational straining flow ur = −1

2
αr, uz = αz in cylindrical polar

coordinates (r, θ, z). Here α is a positive constant which is a measure of the strain
rate. Show that this is a solution of the unsteady vorticity equation provided that the
characteristic radius, δ, satisfies

dδ2

dt
+ αδ2 = 4ν ,

where ν is the kinematic viscosity. Confirm that δ tends to the steady solution δ =
√

4ν/α
as t → ∞, irrespective of its initial value. Give a physical interpretation of this result.

The azimuthal velocity in Burgers’ vortex is uθ = (Γ/2πr)
[

1− exp(−r2/δ2)
]

. Use
order-of-magnitude arguments to show that, for Γ0/ν → ∞, the steady solution has the
property that the viscous dissipation per unit length of the tube is finite and independent
of ν. Why are Burgers’ vortex tubes good candidates for the centres of intense dissipation
in a high Reynolds number turbulent flow, whereas Burgers’ vortex sheets are not?

(ii) Starting with the vorticity equation, derive the governing evolution equation
for the mean enstrophy, 1

2
〈ω2〉, in homogeneous turbulence and use order-of-magnitude

arguments to show that

〈ωiωjSij〉 = ν〈(∇×ω)2〉
[

1 +O(Re−1/2)
]

,

where Sij is the rate-of-strain tensor and Re = uℓ/ν the Reynolds number based on the
integral scales.

(iii) In any flow the third invariant, R, of the velocity gradient tensor, Aij = ∂ui/∂xj ,
can be written in terms of Sij and ω as

R =
1

3
AijAjkAki =

1

3
SijSjkSki +

1

4
ωiωjSij .

Noting that R can be expressed as a divergence, show that, in homogeneous turbulence,

〈ωiωjSij〉 = −
4

3
〈a3 + b3 + c3〉 ,

where a, b and c are the principal rates of strain at any location. Hence confirm that

〈ωiωjSij〉 = −4〈abc〉 .

(iv) Use the results of (iii) to explain why the skewness of ∂ux/∂x is negative and
why bi-axial strain is more common than axial strain in homogeneous turbulence. What
is the significance of the dominance of bi-axial strain?

(v) Briefly discuss the Townsend-Betchov cartoon of the energy cascade, distin-
guishing between the inertial-range and dissipative scales. Why does this cartoon, if
substantially correct, pose a problem for certain mathematical models of the cascade?
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(i) Explain what is meant by internal intermittency. Describe briefly the differences
between intermittency at the integral scale and in the equilibrium range.

(ii) Landau used the existence of integral-scale intermittency to criticise Kolmogorov’s
inertial-range prediction

〈(∆v)p〉(r) = βpǫ
p/3rp/3 , η ≪ r ≪ ℓ ,

where 〈(∆v)p〉(r) is the usual structure function of order p, ǫ the average energy dissipation
rate per unit mass, and the pre-factors βp are assumed universal. Discuss the counter
example provided by Landau and show how this counter example demonstrates that the
βp cannot be universal.

(iii) Kolmogorov refined his original 1941 theory to allow for equilibrium range
intermittency. Discuss Kolmogorov’s refined similarity hypothesis of 1962, explaining the
role played by the random variable ǫAV (r), the dissipation rate averaged over the scale
r at any location in the flow. What is the physical motivation for the refined similarity
hypothesis and in what sense is universality retained in the modified theory?

Describe briefly how Kolmogorov used the empirical estimate 〈ǫ2AV (r)〉/ǫ
2 = B(ℓ/r)µ,

η < r < ℓ, where B and µ are constants, in combination with the refined similarity hy-
pothesis, to predict the exponents ζp in the refined inertial-range scaling 〈(∆v)p〉(r) ∼ rζp .
What aspect of this modified theory has attracted most criticism?

(iv) In both the original and modified theories of the intertial range, Kolmogorov
assumed that 〈(∆v)2〉(r) filters out contributions to 1

2
〈u2〉 that arise from eddies much

larger than the scale r. Explain the usual rationalisation of the common, if imperfect,
estimate

3

4
〈(∆v)2〉(r) ≈

∫

∞

π/r
E(k)dk .

[You may assume isotropy.] Discuss why a better, but still imperfect, estimate in isotropic
turbulence is

3

4
〈(∆v)2〉(r) ≈

∫

∞

π/r
E(k)dk +

r2

10

∫ π/r

0

k2E(k)dk .

Evidently 〈(∆v)2〉(r) retains information about scales greater than r. Explain why this
is also true for higher-order structure functions. Why is this a potential problem for
Kolmogorov’s theories?

(v) In two-dimensional turbulence a similar approximate expression relates 〈(∆v)2〉(r)
to E(k):

1

2
〈(∆v)2〉(r) ≈

∫

∞

π/r
E(k)dk +

r2

8

∫ π/r

0

k2E(k)dk .

However, in two dimensions the inertial-range scaling now takes the form E(k) ∼ k−3.
Show that, if E(k) exhibits a wide interial range, 〈(∆v)2〉(r) in the inertial range is now
dominated by large-scale enstrophy, rather than by the energy below scale r.
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(i) A flow consists of a spatially localised distribution of vorticity, ω(x, t), with the
far-field pressure and velocity both falling off as |x|−3 at large |x|. Show that the linear
impulse, L = 1

2

∫

V∞

x × ωdV , is an invariant of the vorticity field. You may need the
identity

∂

∂xj
(Fixj) =

[

2F+∇(x · F)− x× (∇× F)
]

i
,

which holds for any smooth vector field F. [The symbol V∞ indicates an integral over all
space.]

Let VR be a large spherical control volume of radius R which encloses ω(x, t). Then
it may be shown that L = 3

2

∫

VR
udV . Use the fact that both pressure and velocity fall off

as |x|−3 at large |x| to explain the physical basis for the invariance of L.

(ii) Show that, in isotropic turbulence, the energy spectrum at small k takes the
form

E(k) =
Lk2

4π2
+ . . . , L =

∫

V∞

〈u · u′〉dr .

Show also that Saffman’s integral, L, can be written as

L =

〈

(∫

V udV
)2
〉

V

for some large control volume, V , embedded in the turbulence.

(iii) In the case of V being spherical, V = VR, give a physical interpretation of the
scaling

〈

(
∫

VR

udV

)2
〉

∼ VR

in terms of the linear impulse of the eddies in VR.

(iv) Show that, in isotropic turbulence, L = 4π
[

r3u2f(r)
]

r→∞
where f(r) is the

usual longitudinal correlation function. What is the physical origin of the long-range
correlation f(r → ∞) ∼ r−3?

(v) Starting with the Karman–Howarth equation,

∂

∂t
〈u · u′〉 =

1

r2
∂

∂r

1

r

∂

∂r

(

r4u3K
)

+ 2ν
1

r2
∂

∂r
r2

∂

∂r
〈u · u′〉 ,

show that L is an invariant. [You may assume that the longitudinal triple correlation at
large separation falls off as K(r → ∞) = O(r−4), or faster.] Use momentum conservation
to provide a physical interpretation for the invariance of L.

(vi) Show that, when L is non-zero and the Reynolds number is large, the kinetic
energy decays as 1

2
〈u2〉 ∼ t−6/5.
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DATA SHEET: Kinematic Relationships in Isotropic Turbulence

Second-Order Velocity Correlations

〈ux(x)ux(x + rêx)〉 = u2f(r) , u2 =
〈
u2

x

〉
=

〈
u2

y

〉
=

〈
u2

z

〉

〈uy(x)uy(x + rêx)〉 = u2g(r) =
u2

2r

d

dr
(r2f)

〈u(x)·u(x + r)〉 =
u2

r2

d

dr
(r3f) , r = |r|

Qij(r) = 〈ui(x)uj(x + r)〉 =
u2

2r

[
(r2f)′δij − f ′rirj

]

Dissipation

ε = 〈2νSijSij〉 = ν
〈
ωωω2

〉 ∼ u3/l

Integral Scale, l

l =
∫ ∞

0

f(r)dr =
1

2u2

∫ ∞

0

〈u·u′〉 dr

Taylor Microscale, λ

f = 1− r2

2λ2
+ 0(r4)

λ/l ≈
√

15(ul/ν)−1/2

λ2 =
15u2

〈ωωω2〉 =
u2

〈(∂ux/∂x)2〉
Kolmogorov Microscales, η, v

η = (ν3/ε)1/4 ≈ l(ul/ν)−3/4

v = (νε)1/4 ≈ u(ul/ν)−1/4

1



Structure Functions

〈(4v)p = 〈(ux(x + rêx)− ux(x))p〉
〈
(4v)2

〉
= 2u2(1− f)

〈
(4v)3

〉
= 6

〈
u2

x(x)ux(x + rêx)
〉

Third-Order Velocity Correlations

u3K(r) =
〈
u2

x(x)ux(x + rêx)
〉

Sijk(r) = 〈ui(x)uj(x)uk(x + r)〉

= u3

[
K − rK ′

2r3
rirjrk +

2K + rK ′

4r
(riδjk + rjδik)− K

2r
rkδij

]

Energy Spectrum

E(k) =
1
π

∫ ∞

0

〈u·u′〉 kr sin(kr)dr

〈u·u′〉 = 2
∫ ∞

0

E(k)
sin(kr)

kr
dk

1
2

〈
u2

〉
=

∫ ∞

0

E(k)dk

1
2

〈
ωωω2

〉
=

∫ ∞

0

k2E(k)dk

3
4

〈
(4v)2

〉
=

∫ ∞

0

E(k)H(kr)dk ≈
∫ ∞

π/r

E(k)dk +
r2

π2

∫ π/r

0

k2E(k)dk

(H(x) = 1 + 3x−2 cos x− 3x−3 sin x)

Vorticity Correlation

〈ωωω·ωωω′〉 = −∇2 〈u·u′〉
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Spectrum Tensor

Φij(k) =
1

(2π)3

∫
Qij(r)e−jk·rdr

Qij(r) =
∫

Φij(k)ejk·rdk

Φij(k) =
E(k)
4πk2

[
δij − kikj

k2

]

Signature Function

V (r) = −3
8
r2 d

dr

1
r

d

dr

〈
(∇v)2

〉

rV (r) ≈ [kE(k)]k=π/r ,

∫ ∞

0

V (r)dr =
1
2

〈
u2

〉

One-Dimensional Spectrum

E1(k) =
1
π

∫ ∞

0

〈u·u′〉 cos(kr)dr

E(k) = −k
dE1

dk
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