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1

Let jn be the Jackson operator, i.e., for a 2π-periodic function f from C(T),

jn(f, x) :=

∫ π

−π

f(x− t)Jn(t) dt, Jn(t) :=
3

2πn(2n2 + 1)

sin4 nt
2

sin4 t
2

,

∫ π

−π

Jn(t) dt = 1.

Prove that, for any f ∈ C(T), we have the estimate

‖jn(f)− f‖ 6 c ω2(f,
1
n
) ,

where ω2(f, t) is the second modulus of smoothness of f .

Hence, derive that if f is twice continuously differentiable, then

En(f) 6
c1

n2
‖f ′′‖C(T) .

2

a) For f ∈ C[0, 1], write down the definition of the Bernstein polynomial Bn(f) of
degree n, and prove that ‖Bn(f)‖∞ 6 ‖f‖∞.

b) For a function f ∈ C[0, 1] that takes integer values at x = 0 and x = 1, and for
the sequence of polynomials

B∗
n(f, x) :=

n∑

k=0

⌊(
n

k

)
f

(
k

n

)⌋
xk(1− x)n−k ,

prove that ‖Bn(f)− B∗
n(f)‖∞ → 0 as n → ∞. Here, ⌊t⌋ is the largest integer not bigger

than t.

c) Hence show that a function f ∈ C[0, 1] is approximable by polynomials with
integral coefficients if and only if f(0) and f(1) are integers.
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a) State the Chebyshev alternation theorem for the element of best uniform
approximation to a 2π-periodic function f ∈ C(T) from Tn, the space of all trigonometric
polynomials of degree n.

b) Let

f(x) =
∞∑

k=0

ak cos 5
kx, ak > 0,

∞∑

k=0

ak <∞.

Prove that, for 5m 6 n < 5m+1, the polynomial

tn(x) =
m∑

k=0

ak cos 5
kx

is the best approximant to f from Tn and find the value of En(f) in terms of ak.

c) Let ak = 1
3k
. Find the value of α such that

En(f) 6
c

nα
∀n ∈ N .

4

For a knot sequence (ti)
n+k
i=1 ⊂ [a, b] with distinct knots, let

Mi(t) := k[ti, . . . , ti+k](· − t)k−1
+ , Ni(t) := (ti+k − ti)[ti, . . . , ti+k](· − t)k−1

+

be the sequences of L1- and L∞-normalized B-splines, respectively.

a) Prove that Mi are the piecewise-polynomial functions of degree k− 1 and global
smoothness Ck−2, with knots (ti, . . . , ti+k) and with the finite support [ti, ti+k].

b) Prove that ∫ ti+k

ti

Mi(t) dt = 1 ,

and that
n∑

i=1

Ni(t) ≡ 1, tk < t < tn+1 .
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Let (Ni) and (Mi) be the B-splines bases of degree k − 1 with L∞- and L1-
normalization, respectively, defined on a knot sequence ∆ = (ti)

n+k
i=1 ⊂ [0, 1].

Given f ∈ C[0, 1], let

PS(f) := s∗ =

n∑

j=1

ajNj

be the orthogonal projection of f onto S := span (Nj) with respect to the ordinary inner

product (f, g) =
∫ 1
0 f(x)g(x) dx. Then PS is also well defined as an operator from C[0, 1]

onto C[0, 1].

a) Show that the max-norm of PS satisfies the inequality

‖PS‖∞ 6 ‖G−1‖ℓ∞ ,

where G = (gij) is the Gram matrix with the elements gij = (Mi, Nj).

b) For linear splines (k = 2) and equidistant ∆, with ti+1− ti = h for all i, compute
the entries of G.

c) Using the fact that G is totally positive, or otherwise, prove the estimate

‖G−1‖ℓ∞ 6 3 , k = 2 .

[You may use any appropriate theorems on the inverse of certain matrices if correctly
stated.]
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a) Define a multiresolution analysis of L2(R) with a generator φ and explain how it
is related to existence of an orthonornal wavelet ψ.

b) Prove that the following properties of φ

1) φ(x) =
∑

n

anφ(2x− n), 2) {φ(· − n)}n∈Z is an orthonormal sequence

are equivalent to

1′) f(2t) = m(t)f(t) , m(t) = 1
2

∑

n

ane
−int,

2′)
∑

|f(t+ 2πk)|2 ≡ 1 a.e.

where f is the Fourier transform of φ, i.e., f(t) = φ̂(t) =
∫
R
φ(x)e−ixt dx.

c) Verify that conditions 1′)− 2′) are fulfilled for the function f = φ̂ defined as

f =

{
1, t ∈ [−π, π)
0, otherwise .

Using the inverse Fourier transform or otherwise, determine the corresponding generator
φ.

END OF PAPER
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