

MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2012 9:00 am to 12:00 pm

PAPER 70

APPROXIMATION THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let j_n be the Jackson operator, i.e., for a 2π -periodic function f from $C(\mathbb{T})$,

 $\mathbf{2}$

$$j_n(f,x) := \int_{-\pi}^{\pi} f(x-t) J_n(t) \, dt, \quad J_n(t) := \frac{3}{2\pi n(2n^2+1)} \frac{\sin^4 \frac{nt}{2}}{\sin^4 \frac{t}{2}}, \quad \int_{-\pi}^{\pi} J_n(t) \, dt = 1.$$

Prove that, for any $f \in C(\mathbb{T})$, we have the estimate

$$\|j_n(f) - f\| \leqslant c \,\omega_2(f, \frac{1}{n}),$$

where $\omega_2(f,t)$ is the second modulus of smoothness of f.

Hence, derive that if f is twice continuously differentiable, then

$$E_n(f) \leqslant \frac{c_1}{n^2} \|f''\|_{C(\mathbb{T})} \,.$$

 $\mathbf{2}$

a) For $f \in C[0,1]$, write down the definition of the Bernstein polynomial $B_n(f)$ of degree n, and prove that $||B_n(f)||_{\infty} \leq ||f||_{\infty}$.

b) For a function $f \in C[0,1]$ that takes integer values at x = 0 and x = 1, and for the sequence of polynomials

$$B_n^*(f,x) := \sum_{k=0}^n \left\lfloor \binom{n}{k} f\left(\frac{k}{n}\right) \right\rfloor x^k (1-x)^{n-k},$$

prove that $||B_n(f) - B_n^*(f)||_{\infty} \to 0$ as $n \to \infty$. Here, $\lfloor t \rfloor$ is the largest integer not bigger than t.

c) Hence show that a function $f \in C[0, 1]$ is approximable by polynomials with integral coefficients if and only if f(0) and f(1) are integers.

CAMBRIDGE

3

a) State the Chebyshev alternation theorem for the element of best uniform approximation to a 2π -periodic function $f \in C(\mathbb{T})$ from \mathcal{T}_n , the space of all trigonometric polynomials of degree n.

b) Let

$$f(x) = \sum_{k=0}^{\infty} a_k \cos 5^k x, \qquad a_k > 0, \qquad \sum_{k=0}^{\infty} a_k < \infty.$$

Prove that, for $5^m \leq n < 5^{m+1}$, the polynomial

$$t_n(x) = \sum_{k=0}^m a_k \cos 5^k x$$

is the best approximant to f from \mathcal{T}_n and find the value of $E_n(f)$ in terms of a_k .

c) Let $a_k = \frac{1}{3^k}$. Find the value of α such that

$$E_n(f) \leqslant \frac{c}{n^{\alpha}} \quad \forall n \in \mathbb{N}.$$

 $\mathbf{4}$

For a knot sequence $(t_i)_{i=1}^{n+k} \subset [a, b]$ with distinct knots, let

$$M_i(t) := k[t_i, \dots, t_{i+k}](\cdot - t)_+^{k-1}, \qquad N_i(t) := (t_{i+k} - t_i)[t_i, \dots, t_{i+k}](\cdot - t)_+^{k-1}$$

be the sequences of L_1 - and L_∞ -normalized B-splines, respectively.

a) Prove that M_i are the piecewise-polynomial functions of degree k-1 and global smoothness C^{k-2} , with knots (t_i, \ldots, t_{i+k}) and with the finite support $[t_i, t_{i+k}]$.

b) Prove that

$$\int_{t_i}^{t_{i+k}} M_i(t) \, dt = 1 \,,$$

and that

$$\sum_{i=1}^{n} N_i(t) \equiv 1, \qquad t_k < t < t_{n+1}.$$

Part III, Paper 70

[TURN OVER

UNIVERSITY OF

 $\mathbf{5}$

Let (N_i) and (M_i) be the B-splines bases of degree k - 1 with L_{∞} - and L_1 normalization, respectively, defined on a knot sequence $\Delta = (t_i)_{i=1}^{n+k} \subset [0, 1]$.

Given $f \in C[0,1]$, let

$$P_{\mathcal{S}}(f) := s^* = \sum_{j=1}^n a_j N_j$$

be the orthogonal projection of f onto $S := \text{span}(N_j)$ with respect to the ordinary inner product $(f,g) = \int_0^1 f(x)g(x) dx$. Then P_S is also well defined as an operator from C[0,1] onto C[0,1].

a) Show that the max-norm of $P_{\mathcal{S}}$ satisfies the inequality

$$\|P_{\mathcal{S}}\|_{\infty} \leqslant \|G^{-1}\|_{\ell_{\infty}}$$

where $G = (g_{ij})$ is the Gram matrix with the elements $g_{ij} = (M_i, N_j)$.

b) For linear splines (k = 2) and equidistant Δ , with $t_{i+1} - t_i = h$ for all *i*, compute the entries of *G*.

c) Using the fact that G is totally positive, or otherwise, prove the estimate

 $\|G^{-1}\|_{\ell_{\infty}} \leqslant 3, \qquad k=2.$

[You may use any appropriate theorems on the inverse of certain matrices if correctly stated.]

UNIVERSITY OF

6

a) Define a multiresolution analysis of $L_2(\mathbb{R})$ with a generator ϕ and explain how it is related to existence of an orthonormal wavelet ψ .

5

b) Prove that the following properties of ϕ

1) $\phi(x) = \sum_{n} a_n \phi(2x - n),$ 2) $\{\phi(\cdot - n)\}_{n \in \mathbb{Z}}$ is an orthonormal sequence

are equivalent to

1')
$$f(2t) = m(t)f(t), \quad m(t) = \frac{1}{2}\sum_{n} a_{n}e^{-int},$$

2') $\sum |f(t+2\pi k)|^{2} \equiv 1$ a.e.

where f is the Fourier transform of ϕ , i.e., $f(t) = \widehat{\phi}(t) = \int_{\mathbb{R}} \phi(x) e^{-ixt} dx$.

c) Verify that conditions 1')-2') are fulfilled for the function $f=\widehat{\phi}$ defined as

$$f = \begin{cases} 1, & t \in [-\pi, \pi) \\ 0, & \text{otherwise} . \end{cases}$$

Using the inverse Fourier transform or otherwise, determine the corresponding generator ϕ .

END OF PAPER