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We shall consider in this exercise the dispersive and averaged estimates on a
transport equation. Let us consider the equation

∂f

∂t
+ a(v) · ∇xf = 0 (1)

on the function f = f(t, x, v) > 0 with x ∈ R
d, v ∈ R

d, d ∈ N
∗, and where a : Rd → R

d is
a C∞ function such that its Jacobian ja (determinant of its Jacobian matrix Ja) satisfies

∀ v ∈ R
d, 0 < α1 6 |ja(v)| 6 α2 (2)

for two positive constants α1, α2 > 0.

(a) Define the characteristics ODE system and the characteristics map associated with
the equation, and solve these equations in order to obtain an explicit formula for
the characteristics map.

(b) Deduce that for any initial data fin ∈ C∞
c , the equation (1) has global solutions

defined by
f(t, x, v) = fin(x− ta(v), v) (3)

and that this global solution is C∞ in t, x, v with compact support in x, v for any
time t > 0.

(c) Prove also that for any T > 0 there is R > 0 such that the support of the solution
f(t, ·, ·) constructed in (3) is included in the ball B(0, R) ⊂ R

d×R
d for any 0 6 t 6 T .

Let us denote

CT =
{

f(t, x, v) ∈ C∞([0, T ] × R
d × R

d) ;

∃RT > 0 | ∀ t ∈ [0, T ], supportf(t, ·, ·) ⊂ B(0, RT )
}

. (4)

(d) Prove that for any initial data fin ∈ C∞
c the solution to the equation (1) on [0, T ]

is unique within the class CT .

[Hint: Consider the L2 norm in x and v of the difference of two solutions, prove

that it is well-defined and time-differentiable, and compute its time derivative.]

(e) Recall the statement of the dispersion estimate for the free transport equation, i.e.
in the case when a(v) = v.

(f) Prove the following inequality

‖f(t, ·, ·)‖L∞

x L1
v
= sup

x∈Rd

∫

Rd

|f(t, x, v)| dv 6
Ca

td
‖f(t, ·, ·)‖L1

xL
∞

v

=
Ca

td

∫

Rd

(

sup
v∈Rd

|f(t, x, v)|

)

dx (5)

and give an expression of the constant Ca > 0 in terms of the assumptions made on
the Jacobian of a.
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(g) Consider a solution to the equation (1) on [0, T ] within the class CT described above.
Prove that the function g(t, x, v) = tJa(v)∇xf(t, x, v) +∇vf(t, x, v) is also solution
to the equation (1) on [0, T ] within the class CT , where Ja(v) is the Jacobian matrix
of a(v) at point v. Deduce that

∫

Rd×Rd

|TJa(v)∇xf(T, x, v) +∇vf(T, x, v)|
2 dx dv =

∫

Rd×Rd

|∇vfin(x, v)|
2 dx dv.

(6)
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This question is concerned with the two-dimensional incompressible Euler equation
in vortices formulation

∂tω + u · ∇xω = 0, ω = ω(t, x) ∈ R, x ∈ R
2, (1)

where u is defined in terms of ω by

u = ∇⊥
x φ = (−∂x2

φ, ∂x1
φ) and φ(t, x) := −

1

2π

∫

R2

ln |x− y|ω(t, y) dy,

and with some initial conditions ωin ∈ C∞
c (R × R

2,R). This is a nonlinear transport
equation sharing structural similarity with the Vlasov-Poisson equation. We are interested
here in a theorem due to Yudovich about the existence and uniqueness of solution to this
equation. We shall only be concerned with the core part of the proof of this theorem,
i.e. the construction of the characteristics, and we shall assume the existence of a global
solution ω(t, x) which is L1 ∩ L∞(R2) for any t > 0.

(a) Assume that ω is moreover C2 with compact support, and then prove that the
so-called stream function φ defined above is C2 and satisfies the Poisson equation
∆xφ = ω.

(b) Write the characteristics system of this transport equation in Hamiltonian form,
and give the corresponding Hamiltonian.

(c) Assuming the existence of a global C2 solution to the characteristics system, define
the characteristics map S0,t and prove that its Jacobian is equal to one for any t > 0.

(d) We define for any function Ω ∈ L1 ∩ L∞(R2) the new function U [Ω] on R
2 by

U [Ω](x) := −
1

2π

∫

R2

(x− y)⊥

|x− y|2
Ω(y) dy.

Check this formula yields a well-defined function U [Ω] ∈ L∞(R2).

(e) Prove the following functional inequality

∀x1, x2 ∈ R
2, |U [Ω](x1)− U [Ω](x2)|

6 C
(

‖Ω‖L1(R2) + ‖Ω‖L∞(R2)

)

|x1 − x2| ln |x1 − x2|

for some constant C > 0.

[Hint: Assume w.l.o.g. that |x1 − x2| 6 e−1, and split the integral in three parts

according to the region |y − x3| > 1 and M 6 |y − x3| 6 1 and |y − x3| 6 M
with x3 = (x1 + x2)/2 and M = |x1 − x2| ln |x1 − x2|. Show that the first part is

controlled by a constant times |x1 − x2|‖Ω‖L1 , the second part by a constant times

|x1 − x2| lnM‖Ω‖L∞, and the third part by a constant times M‖Ω‖L∞ .]

(f) Assuming that a given force field U : R2 → R
2 is C0∩L∞ and satisfies the so-called

“Log-Lipschitz” condition

∀x1, x2 ∈ R
2, |U(x1)− U(x2)| 6 C |x1 − x2| ln |x1 − x2|
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prove that the ODE system

ẋ(t) = U(x(t)), x(t) = (x1(t), x2(t))

has global unique solution for any initial initial data (y1, y2).

[Hint: We shall admit the existence of local C1 solution which follows from the

Cauchy-Peano theorem. In order to prove uniqueness, establish a Gronwall estimate

on the difference of two solutions.]

(g) Conclude that the characteristics are globally uniquely defined for any solution to
(1) with ω ∈ L1 ∩ L∞(R2).
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This exercise is concerned with the Weyl theorem. We consider a Hilbert space H
and a bounded operator L on H and a compact operator K on H, i.e. K is bounded and
maps the unit ball into a precompact set. We recall that a bounded operator L on H is
called Fredholm if

1. ker(L) is finite-dimensional;

2. coker(L) = H/range(L) is finite-dimensional;

3. range(L) is closed.

A complex number ξ is said to in the essential spectrum of L iff (L− ξ) is not Fredholm.

(a) Prove Riesz’s theorem: a Hilbert space is finite-dimensional if and only if its closed
unit ball is strongly compact.

[Hint: For proving the infinite-dimensional version of the statement, construct a

sequence hn such that ‖hn−hm‖ > 1/2 as soon as m differs from n, which contradicts

the compactness property.]

(b) Define what it means for a bounded operator to be self-adjoint. Define the spectrum
of a bounded operator.

(c) Prove that for a bounded operator L on H, the spectrum is bounded, and when L
is self-adjoint, Σ(L) ⊂ R.

(d) Prove that a bounded operator K on H is compact iff it has the following complete
continuity property: for any hn weakly convergent in H, then Khn is strongly
convergent.

(e) Prove that the spectrum of a compact operator K on H is either finite or it is a
countable sequence converging to zero. Moreover prove that any non-zero eigenvalue
is associated with a finite-dimensional eigenspace.

(f) Consider a bounded operator L and a compact operator K on H. Prove that L is
Fredholm iff L+K is Fredholm.

(g) Consider a bounded operator L and a compact operator K on H. Prove that L and
L+K have the same essential spectrum.

Part III, Paper 7



7

4

Write an essay on the nonlinear Boltzmann equation, including a presentation and
as many properties, remarks, statements and proofs as possible.

END OF PAPER
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