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SECTION I

1

The equation
(py′′)′′ − (qy′)′ + ry = f

is given in the interval [−1, 1] with the zero boundary conditions y(±1) = y′(±1) = 0.
Here p, q, r ∈ C[−1, 1], f ∈ L2[−1, 1], p(x) > 0, q(x), r(x) > 0 for all x ∈ [−1, 1].

1. Rewrite this as a variational problem, determining the corresponding variational
functional and identifying the correct function space H where it should be min-
imised.

2. Prove that this variational problem possesses a single minimum in H, which is the
weak solution of the underlying ODE system.

Fully justify each step by quoting precise definitions and statements of relevant theorems.

2

We are concerned with the three-stage Runge–Kutta method with the Butcher
tableau
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1. Determine the order of this method.

2. Is the method A-stable?

3. Is it algebraically stable?
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3

Consider the initial-value problem

∂u

∂t
=

∂2u

∂x2
+ α

∂u

∂x
, 0 6 x 6 1, t > 0 ,

given with initial conditions on [0, 1] and periodic boundary conditions at 0 and 1. α is a
given real constant.

1. Determine the order of approximation of the semi-discretized scheme

u′
m

=
1

(∆x)2
(um−1 − 2um + um+1) +

α

2∆x
(um+1 − um−1), m = 1, . . . , N ,

where ∆x = 1/N .

2. Prove stability using two techniques out of {eigenvalue analysis, Fourier analysis,
the energy method}.

4

The ODE y′ = f(y) is solved with the two-step method

yn+2 − αyn+1 − (1− α)yn = h[(1 − 1

4
α)f(yn+2) + (1− 3

4
α)f(yn)] .

1. What is the order of the method for different values of α? For which values of α is
the method convergent?

2. Determine the values of α for which the method is convergent and A-stable.

Part III, Paper 69 [TURN OVER



4

5

The diffusion equation ∂u/∂t = ∂2u/∂x2, x ∈ [0, 1], t > 0, given with L2 initial
conditions and zero Dirichlet boundary conditions, is solved by the numerical method

−aµun+1
m−1

+ (1 + 2aµ)un+1
m

− aµun+1
m+1

= (1− a)µun
m−1 + [1− 2(1− a)µ]un

m
+ (1− a)µun

m+1 ,

where m = 1, . . . ,M , n > 0, ∆x = 1/M , µ = ∆t/(∆x)2 and a is a given real constant.

1. Determine the order of the method for every a;

2. Determine the range of a for which the method is stable for every µ > 0.
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SECTION II

6

Write an essay on error control methodologies for discretised ordinary differential
equations.

7

Write an essay on stability analysis of numerical methods for partial differential
equations of evolution using Fourier analysis.
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