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Let ZN denote the set of integers modulo N . The quantum Fourier transform mod
N has matrix elements (relative to a chosen orthonormal basis B = {| 0〉 , . . . , |N − 1〉} of
an N -dimensional state space):

[QFTN ]ab =
1√
N
wab where a, b ∈ ZN and w = e2πi/N .

(a) Let f : ZN → ZN be a periodic function which is one-to-one within each period
and which can be computed by a poly(logN) sized circuit. Assuming that QFTN and
measurements relative to the basis B can be implemented in poly(logN) time, explain
how the period r of f can be determined in poly(logN) time by a quantum computation
that succeeds with probability O(1/ log logN), and we also learn if the computation has
been successful or not. [You may also assume that the number of integers less than N
that are coprime to N grows as O(N/ log logN).]

(b) A qutrit is a quantum system that has a 3-dimensional state space with a chosen
orthonormal basis denoted {| 0〉 , | 1〉 , | 2〉}. Consider the function f : Z3 × Z3 → Z3

defined by f(x1, x2) = a1x1 + a2x2 mod 3, where a1, a2 ∈ Z3 are constants. Consider also
the associated operation on three qutrits defined by

Uf | x1〉 |x2〉 | y〉 = |x1〉 |x2〉 | y + f(x1, x2) mod 3〉

for all x1, x2, y ∈ Z3.
Let S denote the single qutrit operation defined by S | x〉 = | x+ 1 mod 3〉 for x ∈ Z3.
Show that | ξ〉 = QFT3 | 2〉 is an eigenstate of S.
Suppose now that we are given an oracle for Uf but a1 and a2 are unknown. By suitable use
of | ξ〉 (or otherwise) show that the pair (a1, a2) may be determined by a single application
of Uf together with further operations that are independent of f .
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This question is about lower bounds on quantum query complexity in the model
where the quantum algorithm is given access to bits of an unknown input x via an oracle.

(a) Sketch a proof that, if there exists a quantum algorithm which computes a boolean
function f(x) with certainty on all inputs x, using T queries to x, then f is
represented by a multilinear polynomial of degree at most 2T .

Consider the “majority” boolean function MAJ : {0, 1}3 → {0, 1}, which is defined by

MAJ(x) =

{

0 if |x| 6 1

1 otherwise,

where |x| is the Hamming weight of x ∈ {0, 1}3, i.e. the number of 1s in x.

(b) Write down the multilinear polynomial that represents MAJ, and hence show that
any quantum algorithm computing MAJ(x) with certainty on all inputs x must
make at least two queries to x.

(c) Describe a quantum algorithm which computes MAJ(x) exactly for all inputs x and
makes two queries to x. You may assume the existence of a quantum algorithm
which computes the function PARITY(y) = y1 ⊕ y2 exactly for any y ∈ {0, 1}2,
using one query to y.

Now consider the function MAJn : {0, 1}3n → {0, 1}, which is defined as follows. Split the
input (x1, . . . , x3n) into n contiguous blocks b1, . . . , bn of 3 bits each, and set MAJn(x) = 1
if and only if MAJ(bi) = 1 for all i ∈ {1, . . . , n}. For example,

MAJ2(x1, . . . , x6) = MAJ(x1, x2, x3) ∧MAJ(x4, x5, x6).

(d) Show that any quantum algorithm computing MAJn(x) with certainty on all inputs
x must make at least 3n/2 queries to x.

(e) If f is a boolean function which has block sensitivity b, any quantum algorithm
which computes f(x) with bounded error must make at least Ω(

√
b) queries to x.

Assuming this result, or otherwise, show that any quantum algorithm computing
MAJn(x) with bounded error must make at least Ω(

√
n) queries to x.
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Please see the page following this question for a list of notations used

and statements of two lemmas that may be assumed without proof.

(a) Consider the following quantum circuit C on two qubits prepared initially in the state
|+〉1 |+〉2: apply J1(α), then J2(β), then E12, then J2(γ). Finally measure the two qubits
in the computational basis to obtain an output pair of bits (b1, b2).
Describe (with brief explanations) how this quantum circuit may be simulated by per-
forming a (possibly adaptive) sequence of single qubit measurements on a suitable graph
state, followed by classical deterministic processing of the measurement outcomes.

(b) The logical depth of a (possibly adaptive) measurement pattern on a graph state is
the number of layers of simultaneous measurements that is needed to perform all the
measurements.
Let D be any circuit comprising only H = J(0) and CX gates (on nearest neighbour
qubits) with input state |+〉1 |+〉2 . . . |+〉n. Show that D may be simulated by a
measurement pattern of logical depth one (on a suitable graph state). [Hint: it may

be useful to note that CXij = HjEijHj.]

(c) Let R(α) denote the gate R(α) = J(α)J(0). The commutation relations in lemma 2
below easily imply the following facts:
Fact 1: R(α) commutes with X.
Fact 2: CX has the following Pauli propagation relations:

CXijXi = XiXj CXij CXijXj = Xj CXij .

[You are not required to derive these facts!] Using these facts (or otherwise) show that
any circuit comprising only CX and R(α) gates (using any desired set of α values) may be
simulated by performing a measurement pattern of logical depth two (on a suitable graph
state).
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NOTATIONS AND LEMMAS FOR QUESTION 3

Single qubit states:

|α±〉 =
1√
2
(| 0〉 ± e−iα | 1〉) |+〉 = | 0+〉 =

1√
2
(| 0〉+ | 1〉).

Single qubit measurements:
Mi(α) denotes measurement of the ith qubit in the orthonormal basis {|α+〉 , |α−〉}. The
measurement outcome corresponding to |α+〉 (resp. |α−〉) is taken to be 0 (resp. 1).

Quantum gates: (matrices relative to the computational basis)

J(α) =
1√
2

(

1 eiα

1 −eiα
)

X =

(

0 1
1 0

)

Z =

(

1 0
0 −1

)

.

Two qubit gates:
E = | 0〉 〈0 | ⊗ I + | 1〉 〈1 | ⊗ Z
CX = | 0〉 〈0 | ⊗ I + | 1〉 〈1 | ⊗X

(where I denotes the identity operation). Subscripts on gate names will denote the qubits
to which they are applied. The 2-qubit gates Eij and CXij will always be assumed to be
applied to nearest-neighbour qubits i.e. j = i± 1.

You may assume the following two lemmas:

Lemma 1 (“J-lemma”). Consider two qubits initialised in state |ψ〉1 |+〉2 (where |ψ〉 is
an arbitrary qubit state). If we apply E12 followed by the measurement M1(α), then the
second qubit is left in state XsJ(α) |ψ〉 where s ∈ {0, 1} is the measurement outcome. �

Lemma 2 (“Pauli propagation relations”). The following relations hold for s ∈ {0, 1}:

Ji(α)X
s
i = eisαZs

i Ji((−1)sα)
Ji(α)Z

s
i = Xs

i Ji(α)
EijX

s
i = Xs

i Z
s
jEij

EijZ
s
i = Zs

iEij �
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This question is about quantum phase estimation. Throughout the question, let φ
be a real number satisfying φ = x/2m for some known integer m and unknown integer x
such that 0 6 x 6 2m − 1.

(a) Let U be a unitary operator, and let |ψ〉 be a quantum state such that U |ψ〉 =
e2πiφ|ψ〉. Describe a quantum algorithm which, given access to a controlled-U
operation and the ability to produce |ψ〉, outputs φ exactly. Include a proof of
correctness of your algorithm.

(b) Write down a quantum circuit for your algorithm. You may treat the inverse
quantum Fourier transform (QFT−1) as a black box in your circuit, i.e. you need
not give a circuit for QFT−1.

Let Uφ be the unitary operator on one qubit defined by

Uφ|0〉 =
1

2

(

(1 + e2πiφ)|0〉+ (1− e2πiφ)|1〉
)

,

Uφ|1〉 =
1

2

(

(1− e2πiφ)|0〉+ (1 + e2πiφ)|1〉
)

.

(c) Calculate the eigenvalues and eigenvectors of Uφ. Hence show that, given access to
a controlled-Uφ operation as a black box, φ can be determined exactly with O(2m)
uses of Uφ.

Let U
(n)
φ be the unitary operator on n qubits defined by

U
(n)
φ |x〉 =

(

1 + e2πiφ

2

)n
∑

y∈{0,1}n

(

1− e2πiφ

1 + e2πiφ

)|x⊕y|

|y〉,

where |x ⊕ y| is the Hamming weight of x ⊕ y, i.e. the number of bits in which x and y
differ.

(d) Suppose that n is a power of 2 and φ < 1/n. Show that, given access to a controlled-

U
(n)
φ operation as a black box, φ can be determined exactly with O(2m/n) uses of

U
(n)
φ .

END OF PAPER
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