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(i) Define the trace distance D(ρ, σ) between two states ρ, σ ∈ D(H) and prove that it
can be expressed in the form:

D(ρ, σ) =
1

2
(TrQ+TrR) , (1)

where Q and R are suitably defined positive semi-definite operators in B(H).

(ii) Using the above identity, prove that

D(ρ, σ) = max
P

Tr (P (ρ− σ)) , (2)

where the maximisation is over all projection operators P ∈ B(H).

(iii) Further, prove that
D(ρ, σ) = max

T
Tr (T (ρ− σ)) , (3)

where the maximisation is over all positive semi-definite operators T ∈ B(H) with
eigenvalues less than or equal to unity.

(iv) Let ρ be a quantum state and Λ be a linear completely positive trace-preserving map.
Prove that

Fe(ρ,Λ) 6 (F (ρ,Λ(ρ)))2 , (4)

where Fe(ρ,Λ) denotes the entanglement fidelity, and F (ρ,Λ(ρ)) denotes the fidelity of
the states ρ and Λ(ρ).
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The state of any qubit can be expressed in the form

ρ =
1

2
(I + ~s · ~σ) , (1)

where ~σ = (σx, σy, σz), with σx, σy, and σz being the Pauli matrices, and ~s = (sx, sy, sz)
is the Bloch vector.

(i) If ~s = (1/2, 1/3, 1/5), what is the probability that a projective measurement of the
spin of the qubit along the X-axis will yield a value +1?

(ii) Find how the Bloch vector ~s = (sx, sy, sz) of a qubit changes under the action of an
amplitude damping channel whose Kraus operators are given by

A1 =

(

1 0
0

√
1− p

)

, A2 =

(

0
√
p

0 0

)

.

(iii) What is the Bloch vector of the qubit after it is subjected to asymptotically many
successive actions of the amplitude damping channel? Explain this by referring to the
physical effect that this channel models.

(iv) Find an expression for the entanglement fidelity Fe(ρ,Λ) if ρ is the state of a qubit
and Λ is the amplitude damping channel.
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(i) Let p = {p(x)}x∈J and q = {q(x)}x∈J be two probability distributions, with J being a
finite alphabet. Define their relative entropy D(p‖q) and prove that

D(p‖q) > 0. (1)

(ii) For two states ρ, σ ∈ D(H), prove that the quantum relative entropy satisfies the
inequality

S(ρ||σ) > 0. (2)

(iii) Consider a bipartite system AB in an initial state ρAB ∈ D(HA ⊗ HB). Let
ρA′B′ := (id⊗ Λ) ρAB, where Λ : D(HB) → D(HB) denotes a quantum operation. Prove
that

I(A′ : B′) 6 I(A : B), (3)

where the notation I(A : B) has been used to denote the quantum mutual information of
the bipartite state σAB .

(iv) Consider the states ρ = |0〉〈0| and σ = (1 − ε/2)|0〉〈0| + ε/2|1〉〈1|. Find a bound of
the absolute value of the difference of their von Neumann entropies, in terms of ǫ.
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(i) State the Holevo-Schumacher-Westmoreland Theorem.

1. Use it to obtain the product-state classical capacity of a qubit depolarizing channel
Λ defined as follows:

Λ(ρ) = pρ+
1− p

3
(σxρσx + σyρσy + σzρσz), (1)

where σx, σy and σz are the Pauli matrices.

2. Consider an ensemble of quantum states E = {px, ρx} and let χ(E) denote its Holevo
quantity. Let Λ be a quantum channel. Prove that

χ(E ′) 6 χ(E), (2)

where E ′ = {px,Λ(ρx)}.

(ii) Consider a memoryless, quantum information source characterized by {π,H}, where
π ∈ D(H). Suppose on n uses, the source emits a signal state |Ψ(n)

k 〉 ∈ H⊗n with

probability p
(n)
k , the index k labelling the different possible signals. State the Typical

Subspace Theorem, and use it to prove that for such a source there exists a reliable
compression-decompression scheme of rate R > S(π), where S(π) denotes the von
Neumann entropy of the source.
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(i) The Bell states |Φ+
AB〉, |Φ−

AB〉, |Ψ+
AB〉, and |Ψ−

AB〉, can be characterized by two classical
bits, namely, the parity bit and the phase bit. Show that the latter are eigenvalues of two
commuting observables.

(ii) The Bell states form an orthonormal basis of the two-qubit Hilbert space. It is referred
to as the Bell basis. Let us denote it by B1. A sequence of two operations can be used
to convert states of the computational basis B2 := {|ij〉; i, j ∈ {0, 1}} to the Bell states.
State what these operations are. Can they also be used to convert states of B1 to B2?
Justify your answer.

(iii) Prove that the Schmidt rank of a pure state cannot be increased by local operations
and classical communication (LOCC), clearly stating any theorem that you use.

(iv) It is known that a matrix A is doubly stochastic if and only if x ≺ y, for all vectors
y, where x = Ay.

Let ρ ∈ D(H) be a state, where dim H = d, and let Λ : D(H) → D(H) be a unital

channel. Let r = (r1, r2, . . . , rd) and s = (s1, s2, . . . , sd) respectively denote the vectors of
eigenvalues of ρ and σ = Λ(ρ), arranged in non-increasing order. Using the above result,
prove that r ≺ s.

END OF PAPER

Part III, Paper 65


