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Consider an asteroid in the interior (p+1) : 1 mean motion resonance with a planet
that is on a circular orbit of semimajor axis apl around a star of mass M⋆. The relevant
resonant argument is φ = (p + 1)λpl − λ− p̟, where λpl and λ are the mean longitudes
of the planet and asteroid respectively, ̟ is the asteroid’s longitude of pericentre and p
is a positive integer. Assume that resonant forces have caused the asteroid’s eccentricity
to be pumped up to a value approaching unity such that its pericentre is very close to
the star at an offset q ≪ apl. Show that the angular motion of the asteroid is slower than
the planet when it is further from the star than rx ≈ apl(2q/apl)

1/4, and estimate the true
anomaly fx of the asteroid at this point.

Show that, as the asteroid travels from pericentre to rx, the planet moves angularly
by approximately 1

3
27/8(q/apl)

3/8 radians.

Describe the physical significance of the quantity φ/(p+1) and, by considering the
longitude at which conjunctions occur, discuss which value of φ is likely to lead to stable
libration for p = 1 or 2.

Draw the repeating pattern of the orbit of such an asteroid in the frame rotating
with the planet for stable libration in the p = 2 resonance, highlighting one half of one of
the orbits as the asteroid travels from pericentre to apocentre, and noting the location of
rx on the figure.

Assuming that the asteroid is in resonance, but that φ is unconstrained, make a
crude estimate of the minimum number of encounters with the planet (of mass Mpl) that
are required to change the asteroid’s pericentre distance by of order itself.

[You may assume that the asteroid’s specific angular momentum
h =

√

GM⋆a(1− e2), and that the rate of change of h is equal to the tangential component
of any perturbing acceleration times the asteroid’s distance from the star.]

Part III, Paper 64



3

2

Consider a planet of mass Mpl in orbit around a star of mass M⋆ for which the
equation of relative motion is r̈rr + µrrr/r3, where µ = G(M⋆ +Mpl), rrr is the vector offset
of the planet from the star, r = |rrr|, and dots denote differentiation with respect to time.
Show that there are two constants of motion

C =
1

2
v2 − µ

r
(1)

and
h = r2θ̇, (2)

where v is the speed of the planet relative to the star, and θ is the azimuthal angle in the
planet’s orbital plane relative to a fixed direction.

Given that r = (h2/µ)[1 + e cos (θ −̟)]−1 describes the relative motion, where e
(eccentricity) and ̟ (longitude of pericentre) are constants, show that C and h are related
by

C =
1

2

(µ

h

)2

(e2 − 1). (3)

Consider now that the star is losing mass so that µ changes at a rate µ̇. Show that
the osculating eccentricity varies at a rate

ė = −(µ̇/µ)[e+ cos (θ −̟)], (4)

and that the rate of change of pericentre distance has the opposite sign to that of µ̇ at all
times.

In the adiabatic approximation, all parameters are assumed to have negligible
variation around the orbit. If the orbit averaged value of some quantity x is given by
< x >= 1

P

∫ P
0

xdt, where P is the time for θ to increase from 0 to 2π, show that, in the
limit that the mass loss is adiabatic, < ė >= 0.

If the semimajor axis a is defined such that h2/µ = a(1 − e2), show that (µa) is
constant in the adiabatic limit.

Determine the fraction of the instantaneous rate of increase in azimuthal angle
that is due to pericentre precession, and so set constraints on the characteristic mass loss
timescale for the adiabatic approximation to be valid.
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Consider a test particle in a binary system comprised of two masses M1 and M2.
The massive bodies orbit the centre of mass O at a constant separation a12. Units are
chosen so that a12 = G(M1+M2) = 1, and the particle’s equation of motion in the (x,y,z)
rotating frame centred on O, for which x̂xx points to M2 and ẑzz is parallel to the binary
angular momentum vector, is

ẍ− 2ẏ = ∂U/∂x, (1)

ÿ + 2ẋ = ∂U/∂y, (2)

z̈ = ∂U/∂z, (3)

where U = 1
2
(x2 + y2) + µ1/r1 + µ2/r2, µi = GMi and ri is the distance of the particle

from Mi. Show that there is a constant of motion

C = 2µ1/r1 + 2µ2/r2 + (x2 + y2)− (ẋ2 + ẏ2 + ż2), (4)

and also give this constant in inertial coordinates.

In the rest of the question assume that M2/M1 ≪ 1 and consider the particle’s
motion as defined by its 2-body orbital elements about M1: that is, its semimajor axis
a = (2µ1/r1 − v21)

−1, where v1 is the particle’s speed relative to M1, its eccentricity
e and the inclination of its orbit with respect to the binary orbit I. For certain
conditions, which should be specified, show that the combination of elements given by
T = a−1 + 2

√

a(1− e2) cos I, is a constant.

Consider a particle that is initially on an orbit, of semimajor axis a = 1, that is
coplanar with the binary. The particle then has a close encounter with the body of mass
M2. Show that to be ejected the particle must encounter that body at a relative velocity
in excess of (

√
2 − 1)/2 (in the given units). Hence deduce that it can only be ejected in

a single encounter if the initial eccentricity was above 1
8

√

31− 20
√
2.

Rewrite T in terms of pericentre distance q, and apocentre distance Q, and so show
that the smallest pericentre qmin to which a particle of given T can be scattered following
multiple close encounters with the body of mass M2 is

qmin =
4 + 2T − T 2 − 4

√
3− T

T 2 − 8
. (5)

[You may assume that the ẑzz-component of the particle’s specific angular momentum
is
√

µ1a(1− e2) cos I].
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Consider a broad disk of planetesimals orbiting a star of mass M⋆. Their orbits
are initially coplanar and circular, but each planetesimal orbit has a different semimajor
axis a. The planetesimals can be considered to be massless. A planet of mass Mpl is
introduced into the system orbiting in the disk-plane at a larger semimajor axis apl ≫ a
with an eccentricity of epl ≪ 1 and begins to perturb the orbits of the planetesimals
through its secular perturbations. To first order the evolution of a planetesimal’s complex
eccentricity z = e exp (i̟), where e is its eccentricity, ̟ its longitude of pericentre relative
to that of the planet and i =

√
−1, is given by

ż = iAz + iAplepl, (1)

where A = 1
4
n(Mpl/M⋆)α

2b1
3/2(α), Apl = −Ab2

3/2(α)/b
1
3/2(α), n is the planetesimal’s mean

motion, α = a/apl, and b1,2
3/2(α) are Laplace coefficients. Show that planetesimal orbits

evolve as

z(t) = epl

(

b2
3/2(α)

b1
3/2(α)

)

[1− exp (iAt)] , (2)

and sketch this evolution for a planetesimal at a reference semimajor axis of a1 in the
Argand plane, quantifying where possible.

To lowest order in α, the Laplace coefficients are

bjs(α) ≈ 2
s.(s + 1)...(s + j − 1)

1.2.3...j
αj . (3)

Give z(t) for α ≪ 1 in terms of α and planet parameters, and describe how the evolution
of a planetesimal at a semimajor axis a2 = a1 + δa, where δa/a1 ≪ 1, differs from that
sketched above.

By considering the shape of the orbits at a1 and a2 to lowest order in eccentricity,
and the separation between the orbits as a function of longitude, show that the orbits
overlap after a time tcross where

tcross =
32

45
n−1
pl (M⋆/Mpl)e

−1
pl (a1/apl)

−5/2. (4)

After this time collisions between the planetesimals can occur. If the collision ve-
locity is of order the mean eccentricity times the Keplerian velocity, and the planetesimals
are all of the same size with a dispersal threshold of Q⋆

D, determine and comment on the
constraint on (a1/apl) if the collisions are to be catastrophic.
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