
MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2012 9:00 am to 12:00 pm

PAPER 63

STRUCTURE AND EVOLUTION OF STARS

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

You may use the equations and results given below without proof.

The symbols used in these equations have the meanings that were given in lectures.

Candidates are reminded of the equations of stellar structure in the form:

dm

dr
= 4πr2ρ ,

dP

dr
= −

Gmρ

r2
,

dLr

dr
= 4πr2ρǫ .

In a radiative region
dT

dr
= −

3κρLr

16πacr2T 3
.

In a convective region
dT

dr
=

(Γ2 − 1)T

Γ2P

dP

dr
.

The luminosity, radius and effective temperature are related by L = 4πR2σT 4
e .

The equation of state for an ideal gas and radiation is P =
RρT

µ
+

aT 4

3
,

with 1/µ = 2X + 3Y/4 + Z/2 .
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a) At time t a pre-mainsequence star of mass M and radius R is fully convective
within its photosphere. It is composed of a mixture of fully ionized hydrogen and helium
that behaves like a perfect gas with mean molecular weight µ and for which radiation
pressure can be neglected. Explain why the pressure is given by P = KT 5/2, where T is
the temperature and K(t) is constant throughout the star.

Show that the central density and pressure behave as

ρc ∝
M

R3
and Pc ∝

M2

R4

and deduce that
K(t) = K0µ

−5/2M−1/2R−3/2.

A suitable surface boundary condition is κP = 2
3
g, where κ = κ0ρT

4, with
κ0 = const, is the opacity in the atmosphere and g is the surface gravity. Deduce that the
effective temperature Te obeys

T 8
e =

2

3
Gκ−1

0 K−2
0 ℜµ4M2R,

where ℜ is the gas constant.

The gravitational energy of a polytrope of index n is Ω = −3(5 − n)−1GM2R−1.
Show that

R−7/2 −R
−7/2
0 =

98πσ

3

(

2ℜ

3κ0G

)
1

2

K−1
0 µ2M−1(t− t0),

where R = R0 when t = t0, and σ is the Stefan–Boltzmann constant.

Deduce that the central temperature rises as Tc ∝ µ11/7M5/7t2/7 when t ≫ t0.

b) In a Hertzsprung–Russell diagram sketch the paths followed by two such pre-
mainsequence stars of the same mass and metallicity Z = 0.02 but one with hydrogen
abundance X1 = 0.7 and the other with hydrogen abundance X2 = 0.8 and indicate the
direction of evolution.

Discuss briefly what would cause the evolution to deviate from such tracks.

c) The equation of state of a partially degenerate gas can be approximated by

P =
ρℜT

µi

+Knrρ
5/3,

where µi is the mean molecular weight of the ions and Knr is a constant. When the star
continues to collapse homologously show that the central temperature reaches a maximum

Tmax ∝ M4/3µi.

What does this mean for very low-mass stars?
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In a plane-parallel atmosphere of negligible mass and containing no sources of energy
the optical depth τ is defined by dτ = −κρ dz, where κ(ρ, T ) is the total opacity of material
of density ρ at temperature T , z is the height in the atmosphere and τ → 0 at large z.
The equation of radiative transfer can be written in the form

cos θ
dI

dτ
= I −

j

κ
, (∗)

where I(τ, θ) is the intensity of radiation at optical depth τ at an angle θ to the z-axis
and j is the effective emissivity given by

j

κ
=

σT 4

π
,

where σ is the Stefan–Boltzmann constant. Integrate (∗) over a sphere and use the fact
that the flux F in the z direction is independent of τ to deduce that the mean intensity

J =
1

4π

∫

sphere

I(τ, θ) dΩ =
j

κ
.

Show that the form
I(τ, θ) = A(τ) + C(τ) cos θ

satisfies the Eddington closure approximation

cPr =
4

3
πJ

between radiation pressure Pr, the speed of light c and the mean intensity. Deduce that

C =
3F

4π

and that (∗) is satisfied if
dA

dτ
= C.

Use the fact that there is no flux into the star at τ = 0 to find A(τ) and use the
definition F = σT 4

e of effective temperature Te to deduce that

T 4 =
3

4
T 4
e

(

τ +
2

3

)

and that T0 = 2−1/4Te, where T = T0 when τ = 0.

In the atmosphere of a red dwarf the opacity

κ = κ0P
α−1T 4−4β,

where α > 0 and β > 0 are constants, and radiation pressure is negligible. From
hydrostatic equilibrium show that the pressure P varies with temperature T according
to

Pα =
2αg

3βκ0T 4
0

(T 4β − T 4β
0 ),
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where g is the surface gravity of the star.

Hence deduce that an approximate surface boundary condition is

Pκ

g
=

4α

3β
(1− 2−β)

at a radius r where the stellar luminosity Lr = 4πσr2T 4.
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In a frame in which all the material is corotating with angular velocity ΩΩΩ show that
the equation of hydrostatic equilibrium in a star can be written as

∇P = −ρ∇φ,

where P is the pressure, ρ is the density and φ(rrr) is a combined gravitational and
centrifugal potential which satisfies

∇2φ = 4πGρ− 2Ω2.

Show that P and ρ must be constant on equipotential surfaces. Deduce that ∇2φ is
constant on equipotential surfaces. Is |∇φ| necessarily constant on equipotential surfaces?

Argue that, for a star of uniform composition, temperature T is also constant on
equipotential surfaces.

The star is in radiative equilibrium with heat flux

FFF = −χ∇T = −χ
dT

dφ
∇φ,

where χ is the conductivity which is related to the opacity κ(ρ, T ) by

χ =
4acT 3

3κρ
,

a is the radiation constant and c is the speed of light. Show that the effective temperature
on the surface of the star

Te ∝ g1/4,

where g is the magnitude of the effective gravitational acceleration and sketch the cross-
section of a rapidly spinning star, indicating where it is hottest.

Why is it not in general possible for the energy balance to be given simply by

∇.FFF = ρǫ,

where ǫ(ρ, T ) is the energy generation rate per unit mass?

Now suppose that there is a steady circulation velocity field vvv(rrr) so that the energy
balance is given instead by

ρT
Ds

Dt
= ρvvv.T∇s = ρǫ−∇.FFF ,

where s(ρ, T ) is the specific entropy. Use continuity and the thermodynamic relation

T ds = dh−
1

ρ
dP,

where h(ρ, T ) is the specific enthalpy, to show that

∫

S
F.dSF.dSF.dS =

∫

V
ρǫ dV,
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where S is an equipotential surface enclosing a volume V .

Hence show that the radiative gradient is given by

d log T

d log P
=

3κPL

16πacGmT 4

(

1−
Ω2V

2πGM

)−1

,

where L is the rate of energy generation in V and m is the mass in V .

4

Write an essay on the role of stars in the origin of the elements. Include in your
discussion (a) the various phases of nuclear burning in stars of 1, 5 and 32M⊙, (b) how
nucleosynthetic products are returned to the interstellar medium, (c) how and where
elements with atomic masses greater than that of iron might be formed and (d) a brief
discussion of the importance of binary stars.

END OF PAPER
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