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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u

∂p

∂t
+ u · ∇p = −γp∇ · u

ρ

(

∂u

∂t
+ u · ∇u

)

= −ρ∇Φ−∇p+ 1

µ0
(∇×B)×B

∂B

∂t
= ∇× (u×B)

∇2Φ = 4πGρ

You may assume that for any vectors C and D

∇× (C×D) = −D∇ ·C+C∇ ·D−C · ∇D+D · ∇C

and the components of u · ∇u, for u = (uR, uφ, uz), in cylindrical coordinates (R,φ, z)

are:

(

uR
∂uR
∂R

+
uφ
R

∂uR
∂φ

+ uz
∂uR
∂z

−
u2φ
R
,
uR
R

∂(Ruφ)

∂R
+
uφ
R

∂uφ
∂φ

+ uz
∂uφ
∂z

, uR
∂uz
∂R

+
uφ
R

∂uz
∂φ

+ uz
∂uz
∂z

)

∇ · u =
1

R

∂(RuR)

∂R
+

1

R

∂uφ
∂φ

+
∂uz
∂z
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1

A magnetized gas moving under the ideal MHD equations is such that in a Cartesian
coordinate system (x, y, z), u = (ux, 0, 0), and B = (0, 0, Bz). The motion is such that ρ,
p, ux, and Bz are functions only of x and the gravitational field is negligible. Show that
the governing equations can be written in the form

∂U

∂t
+ A

∂U

∂x
= 0 ,

where
U = [ρ, p, ux, Bz]

T

is four dimensional state vector and A is a 4× 4 matrix given by

A =









ux 0 ρ 0
0 ux γp 0

0 1

ρ
ux

Bz

µ0ρ

0 0 Bz ux









.

Show that A has a repeated eigenvalue λ = ux together with a pair of eigenvalues given
by

λ± = ux ±
√

(

Bz
2

µ0ρ
+
γp

ρ

)

.

Relate these eigenvalues to the propagation of small amplitude perturbations propagating
on a background for which U is constant and for which the space and time dependence is
∝ exp(i(kx− ωt)), with ω and k being constant.

Show further that the governing equations have simple wave solutions corresponding to
each of λ± which evolve according to the equations

∂λ±
∂t

+ λ±
∂λ±
∂x

= 0 .
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2

Write down the equations governing the steady, spherically symmetric accretion
of a barotropic gas for which p = p(ρ) in a general spherically symmetric gravitational
potential Φ. Show that the radial velocity, ur, satisfies the equation

(

u2r − c2s
)

ur

dur
dr

=
2c2s
r

− dΦ

dr
,

where

c2s =
dp

dρ
.

Explain what is meant by the statement that this equation has a critical point and write
down, giving an explanation, the conditions that are required to be satisfied there. Show
also that

1

2
u2r + h+Φ = B ,

where B is a constant, with

h(ρ) =

∫ ρ

ρ1

c2s(ρ
′)

ρ′
dρ′ ,

where ρ1 is an arbitrary constant density, is constant.

Spherically symmetric accretion onto a black hole is modeled by adopting the Paczynski-
Wiita potential given by

Φ = − GM

r − rG
,

where M is the mass, rG = 2GM/c2 is the Schwarzschild radius, and c is the speed of
light. The gas has an isothermal equation of state, such that p = ρc2s, where cs is constant,
and is uniform and at rest at infinity with density ρ0.

Show that there is always a critical point with radius rcrit > rG and give an expression
for rcrit. Show further that the accretion rate is given by

Ṁ =
πρ0(GM)2

4c3s

(

1 + β/2 +
√

1 + β
)2

exp

(

4

1 +
√
1 + β

− 1

2

)

,

where β = 16c2s/c
2.
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3

A steady state axisymmetric magnetohydrodynamic wind is such that the magnetic
field may be written in the form

B = (BR, Bφ, Bz) = − 1

R
eφ ×∇ψ +Bφeφ ,

where ψ is the magnetic flux function and eφ is the unit vector in the azimuthal direction
for cylindrical coordinates (R,φ, z). Show that the continuity equation is satisfied when
the velocity is given by

u =
kB

ρ
+ eφv(R, z) ,

where v(R, z) is an arbitrary function of R and z and k(ψ) is an arbitrary function of ψ.
Show that the steady state induction equation then becomes

B · ∇
(

v(R, z)

R

)

= 0 ,

and hence that v(R, z)/R = ω(ψ) is an arbitrary function of ψ alone.

Assuming that the gas pressure is negligible, show further that the steady state equation
of motion implies that

kB

ρ
· ∇
(

1

2
|u|2 +Φ

)

=
Rω

µ0ρ
eφ · ((∇×B)×B) , and

kB

ρ
· ∇ (Ruφ) =

R

µ0ρ
eφ · ((∇×B)×B) .

Hence show that

1

2
(u2R + u2z + (uφ −Rω)2) + Φ− 1

2
R2ω2 = ǫ(ψ) ,

where ǫ(ψ) depends only on ψ. Assuming the wind is launched near z = 0 where Bφ is
negligible, describe qualitatively the motion in that vicinity.

The poloidal magnetic field lines in the vicinity of the plane z = 0 are straight lines
inclined at an angle α to the z axis. The footpoint of the field line labeled by ψ, located
at R = R0, z = 0, rotates with angular velocity, ω(ψ), given by

ω2(ψ) =
1

R

∂Φ

∂R

∣

∣

∣

∣

R=R0,z=0

.

Show that when Φ ∝ 1/
√
R2 + z2, the condition for the wind to accelerate freely away

from the vicinity of z = 0 is that α > π/6.
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A non magnetic barotropic star, for which p = p(ρ), rotates uniformly about the z
axis with angular velocity Ω so that in cylindrical coordinates (R,φ, z), it has a steady
axisymmetric structure with u = u0 = (0, RΩ, 0).

Show that

H = h(ρ) + Φ− 1

2
R2Ω2

is constant, where

h(ρ) =

∫ ρ

ρ1

c2s(ρ
′)

ρ′
dρ′ ,

with ρ1 being an arbitrary constant density and the square of the sound speed c2s(ρ) =
dp/dρ. The star is subject to small amplitude perturbations so that the velocity becomes
u = u0 + u′, where the velocity perturbation u′ is of the form

u′ = (vR(R, z), vφ(R, z), vz(R, z)) exp(iωt + imφ) ,

with m > 0. The gravitational potential perturbation may be neglected. Show that the
components of the linearized equations of motion yield

iσvR − 2Ωvφ = −∂W
∂R

,

iσvφ + 2ΩvR = − imW
R

,

iσvz = −∂W
∂z

,

where σ = ω+mΩ and p′/ρ = c2sρ
′/ρ =W (R, z) exp(iωt+ imφ), with p′, and ρ′ being the

pressure and density perturbations respectively.

Show also that linearization of the continuity equation yields

iσ
Wρ

c2s
= − 1

R

∂(RρvR)

∂R
− imρvφ

R
− ∂(ρvz)

∂z
.

Show that the linearized equations can be reduced to a single equation for W of the form

(4Ω2 − σ2)
Wρ

c2s
=

1

R

∂

∂R

(

Rρ
∂W

∂R

)

− m2ρW

R2
+

(

1− 4Ω2

σ2

)

∂

∂z

(

ρ
∂W

∂z

)

+
2mΩ

Rσ

∂ρ

∂R
W .

For slow rotation and in the low frequency anelastic approximation the term on the left
hand side is neglected. In addition it can be assumed that ρ becomes a function of√
R2 + z2 alone so that

1

R

∂ρ

∂R
=

1

z

∂ρ

∂z
.

Show that in this limit a solution for W of the form W = zRm exists if

σ =
2Ω

m+ 1
.
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