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i) Sketch the evolution of the radius of the outer mass shell of an overdense region in an

expanding Universe of collisionless matter. Explain why the mass shell virializes at half

the turnaround radius.

ii) Assume the Universe to be Einstein-de-Sitter and matter dominated with Hubble

constant H(t) and background density ρ̄ = 3H2(t)/8πG. Show that for an overdense

homogeneous sphere of collisonless matter with radius R(t) the solution,

τ =
1√
∆ta

[

1

2
arcsin(2y − 1)−

√

y − y2 +
π

4

]

with

∆ta =

(

3π

4

)2

, τ = H(tta) t and y = R(t)/R(tta),

satisfies the equation of motion R̈ = −GM/R2, where M is the mass interior to R.

Use the approximation

τ ≈ 9

3π
y3/2

[

1 +
3y

10

]

for y << 1,

to show that for the linearly extrapolated density contrast δ = (ρ− ρ̄)/ρ̄ at collapse when

R(tcoll = 2 tta) = 0,

δ(tcoll) =
3

5

(

3π

2

)2/3

.
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A thin disc galaxy with radius Rd and surface mass density profile Σ(R) = Σd(R/Rd)
−1

of the baryonic mass has been observed at redshift z = 1. The disc radius subtends an

angle of 7/12 arcsec on the sky and the rotational velocity inferred from spectroscopy is

vdrot = 210 km/s. Assume the Universe to be flat with matter density and cosmological

constant parameters, Ωmat = 1 − λ = 0.25, baryonic density parameter Ωbar = 0.05 and

assume the Hubble constant to evolve with redshift as H(z) = 70 (0.25 (1 + z)3 + 0.75)1/2

km/s Mpc−1.

i) Calculate the linear size of the disc radius Rd from its angular extent.

ii) Assume that after virialization of the halo hosting the disc galaxy all baryons have

settled into centrifugal support conserving angular momentum with the specific angular

momentum of the baryons at the edge of the disc jd(Rd) equal to the specific angular

momentum of the halo at the virial radius jh(rvir). Assume further that the ratio of

rotational velocity at the virial radius to virial velocity of the halo, vhrot(rvir) = 0.1 vvir,

and that the dark matter does not contribute to the gravitational potential at R 6 Rd.

At what redshift is the galaxy expected to have formed? State and explain any additional

assumptions you make.

[You may find the following approximation useful:
∫

1

0
(0.25 (1 + z)3 + 0.75)−1/2 dz ≈ 0.8.]
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The volume cooling rate of gas with temperature T can be written as C(T ) = Λ(T )n2

H
,

where Λ(T ) is the cooling function and nH is the number density of hydrogen.

i) Sketch a diagram of the cooling function of metal-free primordial gas for 104 K < T <

108 K. Discuss the main characteristic features of the cooling curve and the processes

responsible. How does the curve change with the metallicity of the gas? What happens if

the gas becomes photoionized? What processes are available for cooling at T < 104 K?

ii) Sketch the curve in the number density-temperature plane, at which the cooling time

of a uniform cloud of metal-free primordial gas with temperature equal to the virial

temperature equals its free-fall time. Discuss briefly how this diagram has been used

to explain why galaxies have characteristic masses in the range 108 − 1012M⊙. You may

want to include lines of constant mass and lines of constant virial density at characteristic

redshifts in the diagram to support your discussion. Pay particular attention to explaining

how the cooling diagram has been used to explain the upper mass limit of galaxies.

iii) Discuss briefly how the shape of the mass function of dark matter haloes and the

luminosity function of galaxies are related, discussing the physical processes believed to

shape the galaxy luminosity function. You may find it helpful to sketch diagrams of the

mass/luminosity function and the efficiency of star formation as a function of dark matter

halo mass to support your discussion.

[You may find the following helpful for labelling your diagrams. For metal-free primordial

gas: log(Λ (T = 15000K)/(erg cm3)) ≈ −21.8, log(Λ (T = 107 K)/(erg cm3)) ≈ −23.0.

The number density of hydrogen at redshift z = 0 is nH ≈ 2× 10−7cm−3. The Boltzmann

constant can be approximated as kB ≈ 1.38×10−16 ergK−1 and the Gravitational constant

as G ≈ 6.67 × 10−8 cm3 s−2 g−1.]
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i) With the Press-Schechter ansatz, the mass fraction of the matter density in the Universe

in collapsed objects with mass greater than M is,

f(> M, t) = erfc

(

δc(t)√
2σ(M)

)

with erfc(x) =
2√
π

∫

∞

x
exp (−t2) dt.

Explain the meaning of δc(t) and σ(M). Use the Press-Schechter ansatz to derive a mass

function of collapsed objects n(M, t).

ii) The mass function of collapsed objects has the approximate form

n(M, t) ≈ AMα exp [−(M/M∗(t))
β]

with suitable constants A, α and β. The characteristic mass at redshift z = 3 and z = 7

has been inferred from observations to be M∗(z = 3) ≈ 1013M⊙ and M∗(z = 7) ≈
6.25×1011M⊙. Approximate the rms fluctuation amplitude of the matter density smoothed

with a top-hat window function with comoving radius R and the corresponding power

spectrum as a power-law, σ(R) ∝ Rm and P (k) ∝ kn, and calculate m and n. Compare

your value of n with the canonical value of n = 1 for primordial density fluctuations in

the early Universe and explain briefly why they are different.

iii) It has been inferred from observations that σ(R = 7h−1Mpc, z = 3) ≈ 0.25 where

h is the Hubble constant in units of 100 km/s Mpc−1. Estimate at which redshift

the characteristic number density M dn/dM of objects with mass 1010M⊙ becomes

10−4Mpc−3.

[Assume that the mean matter density at z = 0 is 1.41×1011M⊙Mpc−3 and that h = 0.7.]
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