MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2012 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 6

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

Let Ω be a domain in \mathbb{R}^n .

- (i) Define what it means for $v \in L^1_{loc}(\Omega)$ to be the α -th weak derivative of $u \in L^1_{loc}(\Omega)$.
- (ii) Let $u, v \in L^1_{loc}(\Omega)$. Show that v is the α -th weak derivative of u if and only if there exists a sequence of smooth functions u_j on Ω such that $u_j \to u$ in $L^1(\Omega')$ and $D^{\alpha}u_j \to v$ in $L^1(\Omega')$ for all $\Omega' \subset \subset \Omega$.
- (iii) Let $u, v \in W^{1,1}_{\text{loc}}(\Omega)$. Show that $u + v \in W^{1,1}_{\text{loc}}(\Omega)$ with weak derivative Du + Dv.
- (iv) Let $f : \mathbb{R} \to \mathbb{R}$ be a C^1 function with $\sup_{\mathbb{R}} |f'| < \infty$ and let $u \in W^{1,1}_{\text{loc}}(\Omega)$. Show that $f(u) \in W^{1,1}_{\text{loc}}(\Omega)$ with weak derivative f'(u)Du.

$\mathbf{2}$

Let Ω be a bounded domain in \mathbb{R}^n . Consider the uniformly elliptic operator

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du$$

for $u \in W^{1,2}(\Omega)$ and a^{ij} , b^i , c^j , and d bounded measurable functions on Ω .

(i) Define what it means for $u \in W^{1,2}(\Omega)$ to be a weak solution to the Dirichlet problem

$$Lu = D_i f^i + g \text{ in } \Omega, \quad u = \varphi \text{ on } \partial \Omega$$

for $f, g \in L^2(\Omega)$ and $\varphi \in W^{1,2}(\Omega)$.

- (ii) Suppose $\int_{\Omega} (-b^i D_i \zeta + d\zeta) \leq 0$ for all $\zeta \in W_0^{1,1}(\Omega)$ with $\zeta \geq 0$. State and prove the weak maximum principle for a weak solution $u \in W^{1,2}(\Omega)$ to Lu = 0 in Ω .
- (iii) Show that the Dirichlet problem in Part (i) has at most one solution provided $\int_{\Omega} (-b^i D_i \zeta + d\zeta) \leq 0$ for all $\zeta \in W_0^{1,1}(\Omega)$ with $\zeta \geq 0$.
- (iv) Show by an explicit example that the Dirichlet problem in Part (i) can have more than one solution when the condition $\int_{\Omega} (-b^i D_i \zeta + d\zeta) \leq 0$ fails for some $\zeta \in W_0^{1,1}(\Omega)$ with $\zeta \geq 0$.

UNIVERSITY OF

3

Let Ω be a domain in \mathbb{R}^n . Consider the uniformly elliptic operator

$$Lu = a^{ij}D_{ij}u + b^iD_iu + cu$$

for $u \in C^2(\Omega)$ and $a^{ij}, b^i, c \in C^{0,\mu}(\Omega)$ for some $\mu \in (0,1)$.

- (i) Let $f \in C^{0,\mu}(\Omega)$ and suppose that $u \in C^2(\Omega)$ is a solution to Lu = f in Ω . Show that $u \in C^{2,\mu}(\Omega)$.
- (ii) Now let $a^{ij}, b^i, c, f \in C^{1,\mu}(\Omega)$ and suppose that $u \in C^2(\Omega)$ is a solution to Lu = f in Ω . Using Part (i), show that $u \in C^{3,\mu}(\Omega)$.
- (iii) Let a^{ij} , b^i , c, and f be smooth functions on Ω . Use Part (ii) to show that if $u \in C^2(\Omega)$ is a solution to Lu = f in Ω , then u is smooth on Ω .

[You may use without proof any standard result on existence of solutions.]

CAMBRIDGE

 $\mathbf{4}$

Let Ω be a bounded domain in \mathbb{R}^n and let $\mu \in (0,1)$. Let $a^{ij}, b^i, c, f \in C^{0,\mu}(\overline{\Omega})$ with $c \leq 0$. Consider the elliptic operator $Lu = a^{ij}D_{ij}u + b^iD_iu + cu$ for $u \in C^2(\Omega)$.

- (i) Define what it means for $v \in C^0(\Omega)$ to be a subsolution to Lu = f in Ω .
- (ii) Suppose $v \in C^0(\overline{\Omega})$ is a subsolution and $w \in C^0(\overline{\Omega})$ is a supersolution to Lu = f in Ω . Show that if $v \leq w$ on $\partial\Omega$ then $v \leq w$ in Ω .
- (iii) Suppose $v \in C^0(\overline{\Omega})$ is a subsolution to Lu = f in Ω and let $B_R(x_0) \subset \subset \Omega$. Define $V \in C^0(\overline{\Omega})$ such that V = v on $\overline{\Omega} \setminus B_R(x_0)$ and V is the solution to LV = f in $B_R(x_0)$ with V = v on $\partial B_R(x_0)$. Show that V is a subsolution to Lu = f in Ω .
- (iv) Let $\varphi \in C^0(\partial \Omega)$. For $x \in \Omega$, let

 $U(x) = \sup\{v(x) : v \in C^0(\overline{\Omega}) \text{ is a subsolution to } Lu = f \text{ in } \Omega \text{ with } v \leqslant \varphi \text{ on } \partial \Omega\}.$

Show that the function U is well-defined and is a C^2 solution to LU = f in Ω .

[You may use assume the following three facts:

- (a) Given any open ball $B_R(x_0) \subset \Omega$ and $\psi \in C^0(\partial B_R(x_0))$, there exists a unique solution $u \in C^0(\overline{B_R(x_0)}) \cap C^{2,\mu}(B_R(x_0))$ to Lu = f in $B_R(x_0)$ and $u = \psi$ on $\partial B_R(x_0)$.
- (b) If $v \in C^0(\overline{\Omega})$ is a subsolution to Lu = f in Ω , then

$$\sup_{\Omega} v \leqslant \sup_{\partial \Omega} v^+ + C \sup_{\Omega} |f|$$

where $v^+(x) = \max\{v(x), 0\}$ and C > 0 is a constant depending only on n, Ω , and L.

(c) If $v, w \in C^0(\overline{\Omega})$ are subsolutions to Lu = f in Ω , then $\max\{v, w\}$ is also a subsolution.]

CAMBRIDGE

 $\mathbf{5}$

Let Ω be a domain in \mathbb{R}^n .

- (i) State and prove the mean value property for C^2 harmonic functions in Ω .
- (ii) State and prove Weyl's lemma.
- (iii) State and prove the Harnack inequality for C^2 harmonic functions in Ω .

6

Let Ω be a domain in \mathbb{R}^n .

(i) State without proof the weak Harnack inequality for a weak supersolution $u \in W^{1,2}(\Omega)$ to

$$D_i(a^{ij}D_iu + b^iu) + c^jD_ju + du = D_if^i + g \text{ in } \Omega,$$

where $f^i \in L^q(\Omega)$, $g \in L^{q/2}(\Omega)$ for some q > n and a^{ij} , b^j , c^j , d are bounded measurable functions on Ω with

 $a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$ for some $\lambda > 0$ and all $x \in \Omega, \xi \in \mathbb{R}^n$.

(ii) State and prove the strong maximum principle for a weak subsolution $u \in W^{1,2}(\Omega)$ to

$$D_i(a^{ij}D_iu + b^iu) + c^jD_ju + du = 0 \text{ in } \Omega,$$

where a^{ij}, b^j, c^j, d are bounded measurable functions on Ω with

 $a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$ for some $\lambda > 0$ and all $x \in \Omega, \xi \in \mathbb{R}^n$.

(iii) Let $f^i \in L^2(B_1(0)) \cap L^q(B_1(0)), g \in L^2(B_1(0)) \cap L^{q/2}(B_1(0))$ for some q > n and let $\varphi \in C^0(\partial B_1(0))$. Show that there exists a unique solution $u \in C^0(\overline{B_1(0)}) \cap W^{1,2}_{\text{loc}}(B_1(0))$ to

$$\Delta u = D_i f^i + g$$
 weakly in $B_1(0)$, $u = \varphi$ pointwise on $\partial B_1(0)$

[You may assume there exists a solution $u \in W^{1,2}(B_1(0))$ to $\Delta u = D_i f^i + g$ in $B_1(0)$ with $u - \varphi \in W_0^{1,2}(B_1(0))$ whenever $\varphi \in W^{1,2}(B_1(0))$.]

END OF PAPER

Part III, Paper 6