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1

Let Ω be a domain in R
n.

(i) Define what it means for v ∈ L1
loc

(Ω) to be the α-th weak derivative of u ∈ L1
loc

(Ω).

(ii) Let u, v ∈ L1
loc

(Ω). Show that v is the α-th weak derivative of u if and only if there
exists a sequence of smooth functions uj on Ω such that uj → u in L1(Ω′) and
Dαuj → v in L1(Ω′) for all Ω′ ⊂⊂ Ω.

(iii) Let u, v ∈W
1,1
loc

(Ω). Show that u+ v ∈W
1,1
loc

(Ω) with weak derivative Du+Dv.

(iv) Let f : R → R be a C1 function with supR |f ′| < ∞ and let u ∈ W
1,1
loc

(Ω). Show

that f(u) ∈W
1,1
loc

(Ω) with weak derivative f ′(u)Du.

2

Let Ω be a bounded domain in R
n. Consider the uniformly elliptic operator

Lu = Di(a
ijDju+ biu) + cjDju+ du

for u ∈W 1,2(Ω) and aij, bi, cj , and d bounded measurable functions on Ω.

(i) Define what it means for u ∈W 1,2(Ω) to be a weak solution to the Dirichlet problem

Lu = Dif
i + g in Ω, u = ϕ on ∂Ω

for f, g ∈ L2(Ω) and ϕ ∈W 1,2(Ω).

(ii) Suppose
∫
Ω
(−biDiζ + dζ) 6 0 for all ζ ∈ W

1,1
0 (Ω) with ζ > 0. State and prove the

weak maximum principle for a weak solution u ∈W 1,2(Ω) to Lu = 0 in Ω.

(iii) Show that the Dirichlet problem in Part (i) has at most one solution provided∫
Ω
(−biDiζ + dζ) 6 0 for all ζ ∈W

1,1
0 (Ω) with ζ > 0.

(iv) Show by an explicit example that the Dirichlet problem in Part (i) can have more
than one solution when the condition

∫
Ω
(−biDiζ+dζ) 6 0 fails for some ζ ∈W

1,1
0 (Ω)

with ζ > 0.
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Let Ω be a domain in R
n. Consider the uniformly elliptic operator

Lu = aijDiju+ biDiu+ cu

for u ∈ C2(Ω) and aij, bi, c ∈ C0,µ(Ω) for some µ ∈ (0, 1).

(i) Let f ∈ C0,µ(Ω) and suppose that u ∈ C2(Ω) is a solution to Lu = f in Ω. Show
that u ∈ C2,µ(Ω).

(ii) Now let aij, bi, c, f ∈ C1,µ(Ω) and suppose that u ∈ C2(Ω) is a solution to Lu = f

in Ω. Using Part (i), show that u ∈ C3,µ(Ω).

(iii) Let aij, bi, c, and f be smooth functions on Ω. Use Part (ii) to show that if
u ∈ C2(Ω) is a solution to Lu = f in Ω, then u is smooth on Ω.

[You may use without proof any standard result on existence of solutions.]
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Let Ω be a bounded domain in R
n and let µ ∈ (0, 1). Let aij, bi, c, f ∈ C0,µ(Ω) with

c 6 0. Consider the elliptic operator Lu = aijDiju+ biDiu+ cu for u ∈ C2(Ω).

(i) Define what it means for v ∈ C0(Ω) to be a subsolution to Lu = f in Ω.

(ii) Suppose v ∈ C0(Ω) is a subsolution and w ∈ C0(Ω) is a supersolution to Lu = f in
Ω. Show that if v 6 w on ∂Ω then v 6 w in Ω.

(iii) Suppose v ∈ C0(Ω) is a subsolution to Lu = f in Ω and let BR(x0) ⊂⊂ Ω. Define
V ∈ C0(Ω) such that V = v on Ω \ BR(x0) and V is the solution to LV = f in
BR(x0) with V = v on ∂BR(x0). Show that V is a subsolution to Lu = f in Ω.

(iv) Let ϕ ∈ C0(∂Ω). For x ∈ Ω, let

U(x) = sup{v(x) : v ∈ C0(Ω) is a subsolution to Lu = f in Ω with v 6 ϕ on ∂Ω}.

Show that the function U is well-defined and is a C2 solution to LU = f in Ω.

[You may use assume the following three facts:

(a) Given any open ball BR(x0) ⊂⊂ Ω and ψ ∈ C0(∂BR(x0)), there exists a unique
solution u ∈ C0(BR(x0)) ∩ C2,µ(BR(x0)) to Lu = f in BR(x0) and u = ψ on
∂BR(x0).

(b) If v ∈ C0(Ω) is a subsolution to Lu = f in Ω, then

sup
Ω

v 6 sup
∂Ω

v+ +C sup
Ω

|f |

where v+(x) = max{v(x), 0} and C > 0 is a constant depending only on n, Ω, and
L.

(c) If v,w ∈ C0(Ω) are subsolutions to Lu = f in Ω, then max{v,w} is also a
subsolution.]
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Let Ω be a domain in R
n.

(i) State and prove the mean value property for C2 harmonic functions in Ω.

(ii) State and prove Weyl’s lemma.

(iii) State and prove the Harnack inequality for C2 harmonic functions in Ω.

6

Let Ω be a domain in R
n.

(i) State without proof the weak Harnack inequality for a weak supersolution u ∈
W 1,2(Ω) to

Di(a
ijDiu+ biu) + cjDju+ du = Dif

i + g in Ω,

where f i ∈ Lq(Ω), g ∈ Lq/2(Ω) for some q > n and aij , bj, cj , d are bounded
measurable functions on Ω with

aij(x)ξiξj > λ|ξ|2 for some λ > 0 and all x ∈ Ω, ξ ∈ R
n.

(ii) State and prove the strong maximum principle for a weak subsolution u ∈W 1,2(Ω)
to

Di(a
ijDiu+ biu) + cjDju+ du = 0 in Ω,

where aij , bj , cj , d are bounded measurable functions on Ω with

aij(x)ξiξj > λ|ξ|2 for some λ > 0 and all x ∈ Ω, ξ ∈ R
n.

(iii) Let f i ∈ L2(B1(0)) ∩ L
q(B1(0)), g ∈ L2(B1(0)) ∩ L

q/2(B1(0)) for some q > n and
let ϕ ∈ C0(∂B1(0)). Show that there exists a unique solution u ∈ C0(B1(0)) ∩
W

1,2
loc

(B1(0)) to

∆u = Dif
i + g weakly in B1(0), u = ϕ pointwise on ∂B1(0)

[You may assume there exists a solution u ∈W 1,2(B1(0)) to ∆u = Dif
i+g in B1(0)

with u− ϕ ∈W
1,2
0 (B1(0)) whenever ϕ ∈W 1,2(B1(0)).]
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