
MATHEMATICAL TRIPOS Part III

Friday, 1 June, 2012 1:30 pm to 4:30 pm

PAPER 58

BLACK HOLES

Attempt ALL of Section I

and TWO of the THREE questions from Section II.

Section II carries twice the weight of Section I.

The three questions within Section II carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Cover sheet None

Treasury Tag

Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

SECTION I

(i) The motion of a point particle of non-zero mass m may be deduced from the action

S =

∫

dλ

{

dxµ

dλ
pµ −

1

2
e
(

p2 +m2
)

}

.

By eliminating the variables e(x) and pµ(x), or otherwise, show that this action is
equivalent to the action S = −m

∫

dτ , where τ is the particle’s proper time.

(ii) Let the vector field ℓ be normal to a null hypersurface N . Why is ℓ also tangent to
N ? Show that ℓ is tangent to a null geodesic in N (i.e. to a “generator” of N ).

(iii) What is the “future domain of dependence” D+(Σ) of a partial Cauchy surface Σ of
a spacetime M? Sketch the CP diagram for the Reissner-Nordstrom (RN) metric,
and use it to briefly explain the meaning of the term “future Cauchy horizon”. Also
explain briefly why it is believed that the Cauchy horizon of the RN metric would
become singular if the back-reaction of any “test” particle that approaches it could
be properly taken into account.

(iv) What is a null geodesic congruence? What is the significance of the expansion θ of the
congruence? State, with brief justification, a bound on the value of θ for generators
of the event horizon. Explain briefly the distinction betwen the event horizon and
an “apparent horizon”, illustrating your answer with a Finkelstein diagram.

(v) Give reasons, either mathematical or physical, why no local definition of energy exists
for non-stationary spacetimes whereas no such difficulty arises for charge. Write down
the ADM formula for the total energy of an asymptotically-flat spacetime. State the
“dominant energy condition” on the matter stress tensor Tµν that is needed in the
proof that the ADM energy is non-negative.

(vi) A given spacetime metric admits a Killing vector field ξ. Write down the Komar
surface integral for the associated charge Qξ(V ) contained within a volume V on a
spacelike hypersurface Σ (you may ignore the normalization factor). Show how this
can be rewritten as a volume integral of the form

∫

V
dSµJ

µ
ξ . Using Einstein’s field

equations, express Jµ
ξ in terms of the stress tensor Tµν and the vector field ξ, and

show that DµJ
µ
ξ = 0.
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SECTION II

1

(a) Define the term “Killing horizon”. Given that N is a non-degenerate Killing horizon
of the Killling vector field ξ = ∂/∂α, explain how its surface gravity κ arises from the
failure of α to affinely parametrize the generators of N . Hence, or otherwise, show
that

∂µ ξ
2
∣

∣

N
= −2κ ξµ|N .

(b) A static spacetime has the metric

ds2 = −F (r)dt2 +
dr2

F (r)
+ r2

(

dθ2 + sin2 θdϕ2
)

, (∗)

where
F (r) = 1− r2/R2 .

Compute the magnitude a of the 4-acceleration of an observer at r < R on an orbit of
the Killing vector field k = ∂/∂t [i.e., at fixed (r, θ, ϕ)]. Use your result to show that
t is proper time for inertial static observers.

(c) By introducing Eddington-Finkelstein-type coordinates, ingoing (v, r, θ, ϕ) or outgoing
(u, r, θ, ϕ), show that the apparent singularity of the metric (∗) at r = R is a coordinate
singularity. Show further that the hypersurface r = R is a Killing horizon of the Killing
vector field k, and find its surface gravity κ.

(d) Using the relation between surface gravity and the Hawking temperature, which you
should first state, deduce the temperature, in thermal equilibrium, experienced by a
static inertial observer in the spacetime with metric (∗). State the Tolman law for
the local temperature of a static spacetime in thermal equilibrium, and use it to find
the local temperature T (r). How does T (r) compare to the acceleration a of a static
observer as r → R? By considering the form of the metric (∗) near r = R, explain
why your result is expected from the Unruh effect for an observer at constant proper
acceleration in 2D Minkowski spacetime.

(e) Rewrite the metric (∗) in the coordinates (t, χ, θ, φ), where the new angular radial
coordinate χ is defined by

r = R sinχ .

Explain why an apparent singularity of the metric at χ = π/2 is only a coordinate
singularity. Use your results to deduce the CP diagram for its maximally-analytic
extension.
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(a) A stationary axisymmetric black hole spacetime in coordinates (t, r, θ, ϕ) has Killing
vector fields k = ∂/∂t and m = ∂/∂ϕ. Given that its event horizon is a Killing horizon
of the Killing vector field ξ = k + Ωm, for some constant Ω, show that, on the event
horizon,

k2 = Ω2m2 .

State, with justification, the physical interpretation of the constant Ω.

(b) The Kerr metric in Boyer-Lindquist coordinates is

ds2 = −

(

∆− a2 sin2 θ

Σ

)

dt2 +

(

r2 + a2 +
2Ma2r sin2 θ

Σ

)

sin2 θ dϕ2

− 4Ma
r sin2 θ

Σ
dtdϕ +

Σ

∆
dr2 +Σdθ2 ,

where ∆ = r2 − 2Mr + a2 and Σ = r2 + a2 cos2 θ. Explain briefly the nature of the
curvature singularity of this metric, and why the radial coordinate r may be negative.
State the relation of the parameter a to the angular momentum J and explain why
the singularity is a naked one if J2 > M4, i.e. for an over-rotating Kerr black hole. Is
there an event horizon in this case?

(c) By considering how m2 behaves near the singularity of the Kerr metric, explain how
an over-rotating Kerr black hole would allow the construction of a time machine.

(d) Define the term “ergoregion” for a stationary black hole spacetime. In the case of a
Kerr black hole, does the outer boundary of this region, the “ergosphere”, intersect
the event horizon? Illustrate your answer with a sketch of the two surfaces.

(e) On the axis of symmetry in Kerr-Schild coordinates, the Kerr metric reduces to

ds2 = −dt̃2 + dr2 +
2Mr

r2 + a2
(

dt̃+ dr
)2

Show that the radial coordinate for a unit-mass particle of energy ε falling into a Kerr
black hole (M > a) along the axis of symmetry obeys an equation of the form

(

dr

dτ

)2

+ Veff(r) = ε2 ,

where you should find the effective potential Veff . Show that the particle reaches r = 0
only if ε2 > 1. What happens subsequently to a particle with ε2 > 1+M/a? Illustrate
your answer using a CP diagram.
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Write an essay on the relation of black holes to thermodynamics.

You should start with a statement of the laws of black hole mechanics and explain
why they are analogous to the laws of thermodynamics. In particular, by consideration
of the first laws, you should explain how the connection between surface gravity and
temperature leads to the Bekenstein–Hawking formula for the entropy of a black hole.

Next, you should consider a quantum scalar field Φ satisfying the wave equation
Dµ∂µΦ = 0 in a globally hyperbolic non-stationary spacetime that is asymptotic to
Minkowski spacetime in the far past and far future, and explain how the vacuum state
can evolve to a non-vacuum state. You should then explain briefly how your results apply
to late-time Hawking radiation from a Schwarzschild black hole formed from gravitational
collapse.

You should conclude with a brief discussion of some of the implications of Hawking
radiation for both black holes and thermodynamics.

END OF PAPER
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