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1

In the 3+1 formalism, we represent spacetime using the line element

ds2 = −N2dt2 + (3)gij(dx
i −N idt)(dxj −N jdt) ,

where (3)gij(x
i) is the three metric on constant time t hypersurfaces Σ, the lapse function

N(t, xi) defines the change in the proper time and the shift vector N i(t, xi) gives the change

in the spatial coordinates for a ‘normal’ trajectory defined along nµ = (−N, 0, 0, 0). The

Einstein equations in this metric become [do not attempt to derive these]:

(3)R+ 2
3K

2 − K̃ijK̃
ij = 16πGρ , K̃j

i|j − 2
3K|i = 8πGJi .

K̇ +N iK,i +N |i
|i −N((3)R+K2) = 8πGN

(

1
2S − 3

2ρ
)

,

˙̃Ki
j +NkK̃i

j|k −N i
|kK̃

k
j +Nk

|jK̃
i
k +N |i

|j − 1
3N

|k
|kδ

i
j −N(3R̃i

j +KK̃i
j) = −8πGNS̃i

j ,

where | denotes the covariant derivative in Σ, the intrinsic curvature is (3)Rij (with Ricci

scalar (3)R), ρ, Ji and Sij are defined below, and the extrinsic curvature Kij splits into

trace and traceless parts, respectively,

K ≡ (3)gijK
ij , K̃ij ≡ Kij − 1

3
(3)gijK .

(i) For a scalar field φ with Lagrangian Lm ≡ √−g[−1
2 g

µν∂µφ∂νφ − V (φ)], with

conjugate momentum Π ≡ ∂Lm/∂φ̇ = nµ∂µφ = (φ̇ + N i∂iφ)/N , derive the energy-

momentum tensor T µν and find its 3+1 projected components: the energy density,

ρ = nµnνT
µν = N2T 00 = 1

2Π
2 + 1

2∂iφ∂iφ+ V (φ) ,

the momentum density Ji = −Π∂iφ, and the stress tensor Sij which has the trace and

traceless parts, respectively,

S ≡ (3)gijSij =
3
2Π

2 − 1
2∂kφ∂kφ− 3V (φ) , S̃ij =

1
2(∂iφ∂jφ− 1

3∂kφ∂kφ δij) .

(ii) The extrinsic curvature is defined by

Kij ≡ −n(i;j) = − 1

2N

(

(3)gij,0 +Ni|j +Nj|i

)

.

Consider the conformal 3-metric (3)g̃ij = a−2(t, xi)(3)gij where a
6 ≡ (3)g = det((3)gij) and,

hence or otherwise, take the trace of the extrinsic curvature expression to find

K ≡ (3)gijKij = − 1

2N

(

(3)ġ
(3)g

+ 2N i
|i

)

.

In the context of an expanding universe (setting N i = 0), argue that −K/3 can be

interpreted as a locally defined Hubble parameter H(t, xi). [Hint: You may use that

Tr(A−1dA/dt) = d(ln(detA))/dt for any matrix A with non-vanishing determinant.]

(iii) In the long wavelength approximation we neglect second order spatial gradients.

Rewrite the Einstein equations in long wavelength form with the scalar field from (i), using
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K = −3H and taking zero shiftN i = 0. Hence, show that the traceless part of the extrinsic

curvature has the general solution K̃i
j ≈ Ci

j(x) a
−3.

(iv) Use the long wavelength Einstein equations from (iii) to establish that the

nonlinear inhomogeneous variable

ζi ≡ −∂ia

a
+

H

Π
∂iφ ,

is conserved on superhorizon scales, that is, ζ̇i = 0 for k ≪ aH. [Hint: Neglect all K̃i
j

terms and differentiate H2 = 8πG
3 (12Π

2 + V (φ)) to determine Π̇ and ∂iΠ.]

Consider the linear adiabatic perturbation ζ ≡ Ψ − 1
3δρ/(ρ̄ + P̄ ), which we have

defined at linear order using a = ā(1 − Ψ) expanding the field φ as φ = φ̄ + δφ with

homogeneous (background) scale factor ā, energy density ρ̄ and pressure P̄ . Show that

ζi ≈ ∂iζ to linear order and briefly discuss the implications for single field inflation.
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2

In synchronous gauge for linear perturbations about a flat (k = 0) FRW background,

the metric is taken to be

ds2 = a2(τ)
[

−dτ2 + (δij + hij)dx
idxj

]

,

where |det(hij)| ≪ 1 and the relevant connections are Γ0
00 = a′/a, Γ0

0i = Γi
00 = 0,

Γ0
ij =

a′

a
[δij + hij] +

1

2
h′ij , Γi

0j =
a′

a
δij +

1

2
h′ij , Γi

jk =
1

2
[hij,k + hik,j − hjk,i] ,

with primes (e.g. a′) denoting differentiation with respect to the conformal time τ . We

define the scalar trace h = hii and anisotropic scalar hs.

(i) Assume the universe is filled with a perfect fluid with energy-momentum tensor

T µν = (ρ+ P )uµuν + Pgµν ,

where uµ is the fluid 4-velocity, ρ is the energy density and P is the pressure, with the

latter related through an equation of state P = wρ. In a comoving synchronous frame

(i.e. uµ = a−1(1, v) with |v| ≪ 1), linearise the energy-momentum tensor to find that in

Fourier space we have

T 00 =
1

a2
ρ̄(1 + δ) , T 0i =

1

a2
(1 + w)ρ̄ ikiθ , T ij =

1

a2
wρ̄ [(1 + δ)δij − hij ] ,

with ki the components of the comoving wavevector k (k = |k|), the background density

ρ̄ = ρ̄(t), and where suitable definitions should be given for the density perturbation δ and

the velocity potential θ. Show that the energy conservation equation T 0µ
;µ = 0 yields

δ′ − (1 + w)k2θ + 1
2(1 + w)h′ = 0 .

You do not need to derive the corresponding momentum conservation equation, which is

given as θ′ + (1− 3w)a
′

a
θ + w

1+w
δ = 0.

(ii) When solving the Boltzmann equation near decoupling for the photon-baryon

system, we find the moment expansion yields the following equations for the photon density

δγ , velocity θγ and shear viscosity σγ and for the baryon density δb and velocity θb [do

not derive these equations]:

δ′γ − 4
3k

2θγ = −2
3h

′ , θ′γ +
1
4δγ − σγ = −aneσT(θγ − θb)/k

2 ,

σ′
γ +

4
15k

2θγ = − 4
15h

′
S − aneσTσγ ,

δ′b + k2θb = −1
2h

′ , θ′b +
a′

a
θb + c2s δb = −RaneσT(θb − θγ)/k

2 ,

where we have terminated the series at the third moment ℓ = 3 and the ratio R is given

in terms of the relative background photon and baryon densities R = (4/3)ρ̄γ/ρ̄b.

Discuss the comparison between these equations and those obtained assuming the

baryons and photons are decoupled perfect fluids as in part (i). In particular, explain

the origin and nature of the collision terms. Provide a brief argument why we can ignore

higher moments (ℓ > 2) for non-relativistic particles.
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(iii) For initially adiabatic perturbations, while the photons and baryons are tightly

coupled we will have δγ ≈ 4
3δb and θγ ≈ θb. Show that in this limit, the photon and

baryon evolution equations can be combined to become

δ′γ = 4
3k

2θγ − 2
3h

′ , θ′γ = −3c̃2s
(

1
4δγ − σγ

)

− 3c̃2s
R

(

a′

a
θγ +

3
4c

2
s δγ

)

,

where the effective combined sound speed is given by c̃2s ≡ 1
3

R
1+R

= 1
3

(

1 + 3
4
ρ̄b
ρ̄γ

)−1
.

(iv) In the limit that decoupling is in the matter era (cold dark matter Ωc ≈ 1 and a ∝ τ2)

with ρ̄γ ≫ ρ̄b, show that the tight coupling equations can be combined to yield

δ′′γ − 4
3k

2σγ +
1
3k

2δγ = −2
3h

′′ .

Ignoring the slowly-varying inhomogenous terms (involving h and hS) and assuming that

σ′
γ ≈ 0, show that this becomes

δ′′γ +
4

15
τck

2δ′γ +
1

3
k2δγ = 0 .

where τc = (aσTne)
−1. Find general solutions of this equation (ignoring terms of O(τ2c ))

and show that for subhorizon scales they take the following approximate form

δγ(k, τ) ≈
[

A(k) cos(kτ/
√
3) +B(k) sin(kτ/

√
3)
]

exp(−k2/k2D) ,

where kD is a time-dependent damping scale which you should specify. Briefly comment

on the implications of this solution for the temperature anisotropy ∆T
T

power spectrum.
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3

(a) Consider the following Lagrange density up to 3rd order in perturbation theory

L =
1

2
ζ̇2 − 1

2
(∂ζ)2 + αζ̇3 + βζ(∂ζ)2 + γ(∂−2ζ)(ζ̇)2 .

Calculate the conjugate momentum π

π =
∂L
∂ζ̇

.

Hence, calculate the Hamiltonian density for this action H(π, ζ) to third order in
perturbation theory. Identify the interaction Hamiltonian density Hint.

(b) A rescaling is defined to be x → λx where λ > 0 is a real constant. State the
condition for the 2-point correlation function in x space to be scale-invariant, and then
show that this implies that the power spectrum must scale like

P (k) ∝ 1

k3
.

(c) The shape function of a single scalar field slow roll inflationary model is given
by

F (k1, k2, k3) = (2π)3
H4

M4
p

1

4ǫ2
1

k31k
3
2k

3
3





η

8

∑

i

k3i +
ǫ

8



−
∑

i

k3i +
∑

i 6=j

kik
2
j +

8

K

∑

i>j

k2i k
2
j







 ,

where ǫ and η are the slow-roll parameters and K = k1 + k2 + k3. Find the squeezed limit
of this shape function. What is the geometrical meaning of this limit?

(d) Consider a field Φ(x), defined by the following ansatz

Φ(x) = ΦG(x) + f local
NL (ΦG(x)

2 − 〈ΦG(x)
2〉),

where f local
NL is a constant and ΦG(x) is a Gaussian random field in the sense that its

Fourier transform coefficients ΦG(k)

ΦG(x) =

∫

d3k

(2π)3
ΦG(k)e

ik·x

are drawn from a Gaussian probability distribution function, with its linear power
spectrum given by

〈ΦG(x)ΦG(x
′)〉 ≡

∫

d3k

(2π)3
P (k)eik·(x−x

′).

Show that the leading higher order (i.e. beyond the 2-pt correlation funcation) correlation
function for Φ(x) is given by

〈Φ(k1)Φ(k2)Φ(k3)〉 = f local
NL

[

2(2π)3P (k1)P (k2)δ
3(k1 + k2 + k3) + sym

]

.
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4

Consider the following term in the interaction Hamiltonian for a non-canonical
theory of inflation

Hint(τ) =

∫

d3x
a(τ)ǫ

c2s
(ǫ+ 1− c2s)ζ(x, τ)(∂ζ(x, τ))

2 ,

where τ is conformal time, and ∂ denotes the spatial derivative. The slow-roll parameter
ǫ and the sound speed c2s 6 1 are varying very slowly with time, so for the purpose of this
calculation you can assume that they are constants.

During inflation, we can expand the interaction picture field ζI in the following way

ζI(x, τ) =

∫

d3k

(2π)3

[

aI(k)u
∗
k(τ)e

ik·x + a†I(k)uk(τ)e
−ik·x

]

= ζ+I (x, τ) + ζ−I (x, τ) ,

where the mode function has the following solution

uk(τ) =
H√
4ǫcsk3

(1− ikcsτ)e
icskτ .

(i) Using this interaction Hamiltonian, show that the 3-point correlation function
at τ → 0

〈ζ(k1, τ)ζ(k2, τ)ζ(k3, τ)〉

= Re

〈[

−2iζI(k1, τ)ζI(k2, τ)ζI(k3, τ)

∫ τ

−∞(1+iǫ)
dτ ′ a(τ ′)HI

int(τ
′)

]〉

is given by

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉 =
H4

16ǫ2c4s
(ǫ+ 1− c2s)(2π)

3 1

k31k
3
2k

3
3

δ3(k1 + k2 + k3)

×
(

(k1 · k2)

(

−K +
k1k2 + k1k3 + k2k3

K
+

k1k2k3
K2

)

+ 1 → 3 + 2 → 3

)

,

where K = k1 + k2 + k3. [You may assume that the scale factor a(τ) = −1/(Hτ) and τ
runs from −∞ < τ < 0.]

(ii) Write down the leading contribution to the 3-point correlation function for this
interaction term in the following two limits, assuming that ǫ ≈ 0.01,

• c2s → 1,

• c2s ≪ 1.

What is the ratio of the amplitudes of the 3-point correlation function generated by the
above two terms? Compare and comment on their relative magnitude as a function of c2s.
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END OF PAPER
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