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(a) Explain the following terms: covariant derivative, connection components.

(b) What does it mean for a connection to be torsion-free? Define the Levi-Civita

connection and derive the formula

Γµ
νρ =

1

2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ)

(c) A 2d Riemannian manifold has metric

ds2 = dr2 + f(r)2 dφ2

where φ is periodically identified with period 2π (so curves of constant r are circles).

(i) Determine the necessary and sufficient conditions on f(r) for the circle r = r0 to have
the property that all vectors are invariant under parallel transport around the circle.

(ii) Deduce that there is a 2-parameter family of functions f(r) for which all circles of
constant r have this property.

(iii) For this 2-parameter family, show that the metric is locally isometric to the Euclidean
metric. Is it globally isometric?
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Let T a be tangent to a 1-parameter family of timelike geodesics of the Levi-Civita
connection, parameterized by proper time. Let Sa be a deviation vector for this family.

(a) Explain the term deviation vector. Explain why [S, T ] = 0.

(b) State and prove the geodesic deviation equation. You may assume the definition of the
Riemann curvature tensor:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

(c) Prove that if Sa and T a are orthogonal at one point along a geodesic γ (belonging to
the 1-parameter family) then they are orthogonal everywhere along γ.

(d) Suppose that spacetime is four-dimensional with Riemann tensor

Rabcd =
1

12
R (gacgbd − gadgbc)

Show that R must be constant.

(e) Assume that Sa is orthogonal to T a. Let f = SaS
a. Show that, in the above spacetime,

the following quantity is constant along a geodesic γ in the family

K = (∇TS)a(∇TS)
a
−

1

12
Rf

(f) Obtain a second order differential equation for the evolution of f along γ. Hence
deduce that if R > 0 then geodesics which are close initially will diverge exponentially.
What happens if R < 0?
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In the study of linearized perturbations of Minkowski spacetime, it is assumed that
there exist global coordinates xµ with respect to which the metric has components
gµν = ηµν + hµν where ηµν = diag(−1, 1, 1, 1) and the components of hµν have absolute
values much smaller than 1. Indices are raised with ηµν and lowered with ηµν .

(a) Let h = hρρ and h̄µν = hµν − (1/2)h ηµν . By imposing the gauge condition ∂µh̄µν = 0,
derive the linearized Einstein equation in the form

∂ρ∂ρh̄µν = −16π Tµν

You may use the following formula, valid in a coordinate basis:

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γτ

νσΓ
µ
τρ − Γτ

νρΓ
µ
τσ

(b) Consider a vacuum plane gravitational wave solution with

h̄µν = Re
(

Hµνe
ikρx

ρ
)

where Hµν is a constant complex matrix and kρ a constant covector. What restrictions
must Hµν and kρ obey in the above gauge?

Explain why there is a residual gauge freedom hµν → hµν + 2∂(µξν) provided ξµ satisfies
a certain condition. Show that this condition is satisfied by

ξµ = Re
(

Xµe
ikρx

ρ
)

where Xµ is constant. Now show that Xµ can be chosen to bring Hµν to the form

Hµν =









0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0









Use your results to justify the statements that gravitational waves travel at the speed of
light, are transverse, and have 2 independent polarizations.

(c) (i) Explain briefly why it is not possible to define an energy-momentum tensor for the
gravitational field in General Relativity.

(ii) Explain how to define a symmetric tensor tµν that is quadratic in the linearized
gravitational field hµν and conserved ∂µtµν = 0. (You are not expected to give detailed
formulae for the curvature tensors expanded to second order.)

(iii) Why is tµν unsatisfactory as a definition of an energy-momentum tensor for hµν?

Part III, Paper 56



5

4

(a) (i) What is a Killing vector field?

(ii) Show that if a spacetime admits a Killing vector field then along any geodesic there is
a conserved quantity.

(iii) Write down 3 linearly independent Killing vector fields of the metric

ds2 = A(z)2
(

−dt2 + dx2 + dy2
)

+ dz2

where A(z) is a positive function.

(b) An orthonormal basis for the above metric is defined by

e0 = Adt e1 = Adx e2 = Ady e3 = dz

Determine the connection 1-forms ωµ
ν satisfying deµ = −ωµ

ν ∧ eν and the curvature
2-forms defined by

Θµ
ν = dωµ

ν + ωµ
ρ ∧ ωρ

ν

(c) The null energy condition states that the energy-momentum tensor should satisfy
Tabk

akb > 0 for any null vector ka. Show that, if the above metric satisfies the Einstein
equation with an energy-momentum tensor satisfying the null energy condition then

d2

dz2
logA(z) 6 0

END OF PAPER
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