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1

Find the structure constants of the three–dimensional Lie algebra g generated by
matrices

X0 =





1 0 0
0 0 0
0 0 0



 , X1 =





0 1 0
0 0 0
0 0 0



 , X2 =





0 0 1
0 0 0
0 0 0



 .

The Lie group G corresponding to g is the multiplicative group of real matrices of the
form

g =





ρ x1 x2

0 1 0
0 0 1



 , where ρ ∈ R
+, (x1, x2) ∈ R

2.

(a) Find the left-invariant one-forms {λj , j = 0, 1, 2} corresponding to a basis {Xj} of g,
and hence deduce that

h =
1

ρ2
(dρ2 + (dx1)2 + (dx2)2)

is a left–invariant metric on G.

(b) Show that

dλi +
1

2
f i
jkλ

j ∧ λk = 0,

where the constants f i
jk should be determined.

(c) Find the left–invariant vector fields on G and show explicitly they generate a Lie
algebra isomorphic to g.

2

Write an essay on topological degree of maps between manifolds.
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3

Define a principal bundle (π, P,B,G).

Consider a connection
ω = γ−1Aγ + γ−1dγ

on P , where A is a one–form on B and γ ∈ G.

(a) Show that ω does not depend on the choice of trivialisation of P if A transforms like
a gauge potential on B.

(b) Use the right–invatiant vector fields on G to construct dim(B) linearly independent
vector fields on P such that their contraction with ω vanishes. Show that these vector
fields mutually comute iff F = dA+A ∧A = 0.

4

Let (M,ω) be a symplectic manifold. Define a Hamiltonian vector field, and exibit a
homeomorphis between the Lie algebras of functions on M with the Poisson bracket, and
Hamiltonian vector fields with the Lie bracket. What is the kernel of this homomorphsm?

Consider a symplectic form ω on M = S2 given by

ω = i
dz ∧ dz̄

(1 + |z|2)2
,

where z is an affine coordinate on CP
1 = S2.

(a) Find a real vector field which generates a U(1) action on S2

z −→ eiθz

where θ ∈ R.

(b) Show that this vector field is Hamiltonian, and find the corresponding Hamiltonian
function.
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