MATHEMATICAL TRIPOS Part III

Monday, 11 June, $2012 \quad 9{:}00 \ \mathrm{am}$ to $11{:}00 \ \mathrm{am}$

PAPER 55

APPLICATIONS OF DIFFERENTIAL GEOMETRY TO PHYSICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Find the structure constants of the three–dimensional Lie algebra ${\mathfrak g}$ generated by matrices

2

$$X_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The Lie group G corresponding to \mathfrak{g} is the multiplicative group of real matrices of the form

$$\mathsf{g} = \left(\begin{array}{ccc} \rho & x^1 & x^2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), \quad \text{where} \quad \rho \in \mathbb{R}^+, (x^1, x^2) \in \mathbb{R}^2.$$

(a) Find the left-invariant one-forms $\{\lambda^j, j = 0, 1, 2\}$ corresponding to a basis $\{X_j\}$ of \mathfrak{g} , and hence deduce that

$$h = \frac{1}{\rho^2} (d\rho^2 + (dx^1)^2 + (dx^2)^2)$$

is a left–invariant metric on G.

(b) Show that

$$d\lambda^i + \frac{1}{2}f^i_{jk}\lambda^j \wedge \lambda^k = 0,$$

where the constants f_{jk}^i should be determined.

(c) Find the left–invariant vector fields on G and show explicitly they generate a Lie algebra isomorphic to $\mathfrak{g}.$

 $\mathbf{2}$

Write an essay on topological degree of maps between manifolds.

UNIVERSITY OF

3

Define a principal bundle (π, P, B, G) .

Consider a connection

$$\omega = \gamma^{-1}A\gamma + \gamma^{-1}d\gamma$$

3

on P, where A is a one-form on B and $\gamma \in G$.

- (a) Show that ω does not depend on the choice of trivialisation of P if A transforms like a gauge potential on B.
- (b) Use the right-invatiant vector fields on G to construct dim(B) linearly independent vector fields on P such that their contraction with ω vanishes. Show that these vector fields mutually comute iff $F = dA + A \wedge A = 0$.

$\mathbf{4}$

Let (M, ω) be a symplectic manifold. Define a Hamiltonian vector field, and exibit a homeomorphis between the Lie algebras of functions on M with the Poisson bracket, and Hamiltonian vector fields with the Lie bracket. What is the kernel of this homomorphism?

Consider a symplectic form ω on $M = S^2$ given by

$$\omega = i \frac{dz \wedge d\bar{z}}{(1+|z|^2)^2},$$

where z is an affine coordinate on $\mathbb{CP}^1 = S^2$.

(a) Find a real vector field which generates a U(1) action on S^2

 $z \longrightarrow e^{i\theta} z$

where $\theta \in \mathbb{R}$.

(b) Show that this vector field is Hamiltonian, and find the corresponding Hamiltonian function.

END OF PAPER