MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2012 1:30 pm to 4:30 pm

PAPER 5

INTRODUCTION TO FUNCTIONAL ANALYSIS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

What is a Fréchet space? Describe without proof how the topology of a Fréchet space can be defined in terms of seminorms.

What is the weak topology on a Fréchet space? Show that it is a Hausdorff topology. Show that a linear functional on a Fréchet space is continuous in the weak topology if and only if it is continuous in the original topology.

Suppose that T is a linear mapping from a Fréchet space (E_1, τ_1) to a Fréchet space (E_2, τ_2) . Show that T is continuous when E_1 and E_2 are given their original topologies if and only if it is continuous when they are given their weak topologies.

$\mathbf{2}$

Let Ω denote the Bernoulli space $\prod_{j=1}^{\infty} \{0, 1\}_j$, with its product topology. What is a *cylinder set* in Ω ? Show that a cylinder set is open and closed, and that the cylinder sets are a base for the topology on Ω .

If A is a subset of Ω , let I_A denote its indicator function, Show that $S(\Omega) = \operatorname{span}\{I_C : C \text{ a cylinder set}\}$ is a dense linear subspace of $(C_{\mathbf{R}}(\Omega), \|.\|_{\infty})$.

Suppose that ϕ is a positive linear functional on $C_{\mathbf{R}}(\Omega)$, with $\phi(I_{\Omega}) = 1$. Show that ϕ is continuous.

If C is a cylinder set, let $l(C) = \phi(I_C)$. Show that ϕ extends to a unique countably additive function on the open subsets of Ω .

Describe briefly how to show that there exists a unique probability measure **P** on Ω such that $\phi(f) = \int_{\Omega} f \, d\mathbf{P}$, for each $f \in C_{\mathbf{R}}(\Omega)$.

Suppose that (X,d) is a compact metric space and that ϕ is a positive linear functional on $C_{\mathbf{R}}(X)$, with $\phi(I_X) = 1$. Show that there exists a probability measure \mathbf{Q} on X such that $\phi(f) = \int_X f \, d\mathbf{Q}$, for each $f \in C_{\mathbf{R}}(X)$. [You may assume that there is a continuous surjection h of Ω onto X.]

3

Suppose μ and ν are finite non-negative measures on a measurable space (Ω, Σ) . Show that there exist a non-negative $f \in L^1(\mu)$ and a set $B \in \Sigma$ with $\mu(B) = 0$ such that $\nu(A) = \int_A f \, d\mu + \nu(A \cap B)$ for each $A \in \Sigma$.

What does it mean to say that ν is absolutely continuous with respect to μ ? Show that ν is absolutely continuous with respect to μ if and only if there exist a non-negative $f \in L^1(\mu)$ such that $\nu(A) = \int_A f \, d\mu$ for each $A \in \Sigma$.

Suppose that $f \in L^1(\Omega, \Sigma, \mu)$ and that Σ_0 is a sub- σ -field of Σ . Show that there exists $f_0 \in L^1(\Omega, \Sigma_0, \mu)$ such that $\int_A f \, d\mu = \int_A f_0 \, d\mu$ for all $A \in \Sigma_0$.

UNIVERSITY OF

 $\mathbf{4}$

Let λ_d denote Lebesgue measure on the Borel sets of \mathbf{R}^d . Suppose that \mathcal{G} is a collection of open balls in \mathbf{R}^d which cover a compact set K. Show that there exists a finite subset \mathcal{F} of \mathcal{G} whose elements are disjoint, such that $\lambda_d(\bigcup_{U \in \mathcal{F}} U) \geq \lambda_d(K)/3^d$.

Suppose that μ is a Borel probability measure on \mathbf{R}^d . What does it mean to say that μ has a spherical derivative at x? Suppose that μ and λ_d are mutually singular. Show that μ has spherical derivative 0 at λ_d -almost every point of \mathbf{R}^d .

Suppose that μ is a Borel probability measure on \mathbf{R}^1 and that μ and λ_1 are mutually singular. Show that the cumulative distribution F of μ (where $F(t) = \mu((-\infty, t])$) is differentiable, with derivative 0, at λ_1 -almost every point of \mathbf{R} .

END OF PAPER