MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2012 $\,$ 1:30 pm to 3:30 pm

PAPER 49

STATISTICAL FIELD THEORY

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Give an account of the Landau-Ginsberg (LG) theory of phase transitions in the context of a scalar field theory which should include a discussion of the following points:

- (i) the idea of an order parameter;
- (ii) the distinction between first-order and continuous phase transitions and how their defining properties are explained;
- (iii) the idea of universality giving an example;
- (iv) the idea of *critical exponents* and how they may be derived;
- (v) the reason why a line of first order transitions must terminate in a critical point associated with a continuous phase transition;
- (vi) the explanation of the features of a two-dimensional phase diagram containing a tricritical point in which you should identify a line of three-phase coexistence and give a reason for its occurrence.

Near to a continuous phase transition at $T = T_C$, the critical exponents α , β , γ and δ are defined by

Specific heat: $C_V \sim |t|^{-\alpha}$ (h = 0), Magnetization: $M \sim |t|^{\beta}$ (t < 0, h = 0), Susceptibility: $\chi \sim |t|^{-\gamma}$ (h = 0), Magnetization: $M \sim |h|^{1/\delta}$ (t = 0),

where $t = (T - T_C)/T_C$ and h is the applied magnetic field. Calculate α , β , γ and δ for a tricritical point and verify the scaling relations

$$\alpha + 2\beta + \gamma = 2, \quad \beta \delta = \beta + \gamma.$$

 $\mathbf{2}$

A spin model in D dimensions is defined on a cubic lattice of spacing a with N sites and with spin $\sigma_{\mathbf{n}}$ on the **n**-th site. The Hamiltonian is defined in terms of a set of operators $O_i(\{\sigma\})$ by

$$\mathcal{H}(\boldsymbol{u},\sigma) \;=\; \sum_i \; u_i O_i(\{\sigma\}) \;,$$

where the u_i are coupling constants with $\boldsymbol{u} = (u_1, u_2, \ldots)$. In particular, \mathcal{H} contains the term $-h \sum_{\mathbf{n}} \sigma_{\mathbf{n}}$ where h is the magnetic field. The partition function is given by

$$\mathcal{Z}(\boldsymbol{u}, C, N) = \sum_{\sigma} \exp(-\beta \mathcal{H}(\boldsymbol{u}, \sigma) - \beta NC)$$

Define the two-point correlation function $G(\mathbf{r})$ for the theory and state how the correlation length ξ parametrizes its behaviour as $|\mathbf{r}| \to \infty$. State how the susceptibility χ can be expressed in terms of $G(\mathbf{r})$.

Explain how the renormalization group (RG) transformation may be defined in terms of a blocking kernel which, after p iterations, yields a blocked partition function $\mathcal{Z}(\boldsymbol{u}_p, C_p, N_p)$ which predicts the same large-scale properties for the system as does $\mathcal{Z}(\boldsymbol{u}, C, N)$. State how a and N rescale in terms of the RG scale factor b.

Derive the RG equation for the free energy $F(\boldsymbol{u}_p, C_p)$, and explain how it may be expressed in terms of a singular part, $f(\boldsymbol{u})$, which obeys the RG equation

$$f(\boldsymbol{u}_0) = b^{-pD} f(\boldsymbol{u}_p) + \sum_{j=0}^{p-1} b^{-jD} g(\boldsymbol{u}_j), \quad p > 0.$$

What is the origin of the function g(u) which determines the inhomogeneous part of the transformation?

Explain the idea of a fixed point, *relevant* and *irrelevant* operators, a critical surface and a repulsive trajectory in the context of the RG equations. Sketch some typical RG flows near to a critical surface.

Show how the critical exponents characterizing a continuous phase transition may be derived. In the case where there are two relevant couplings $t = (T - T_C)/T_C$ and h, and stating any assumptions you make, derive the scaling hypothesis for the free energy near to a critical point:

$$F(\boldsymbol{u}_0, C_0) = |t|^{D/\lambda_t} \left(f_{\pm} \left(\frac{h}{|t|^{\lambda_h/\lambda_t}} \right) + C_{\pm} \right) + I_{\pm}(t) ,$$

where the meanings of λ_t , λ_h should be explained and the properties of the functions $I_{\pm}(t)$ given. What is the significance of the subscript label \pm ?

Near to a critical point, for h = 0, the specific heat C_V behaves like

$$C_V \sim \begin{cases} A_+ |t|^{-\alpha} & t > 0 \\ A_- |t|^{-\alpha} & t < 0 \end{cases},$$

where α is the critical exponent. Explain why the amplitude ratio A_+/A_- is expected to be universal.

Part III, Paper 49

[TURN OVER

The critical exponents β, γ and ν are defined, for h = 0, by:

$$M \sim |t|^{\beta} \ (t < 0), \quad \chi \sim |t|^{-\gamma}, \ \xi \sim |t|^{-\nu},$$

where M is the magnetization and χ is the susceptibility. Establish the scaling relations $\alpha + 2\beta + \gamma = 2$ and $\alpha = 2 - D\nu$.

3

The Gaussian model in D dimensions for a real scalar field, $\phi(\mathbf{x})$, is defined by the Hamiltonian density

5

$$\mathcal{H}(\phi(\boldsymbol{x})) = \frac{1}{2} \left[\kappa^{-1} (\nabla \phi(\boldsymbol{x}))^2 + m^2 \phi(\boldsymbol{x})^2 \right] - J(\boldsymbol{x}) \phi(\boldsymbol{x}),$$

where κ and m are coupling constants and $J(\boldsymbol{x})$ is a real external scalar field.

Find the Hamiltonian governing the Fourier transformed field $\tilde{\phi}(\boldsymbol{p})$, and show that the partition function for the system is given by

$$\mathcal{Z}_0(\tilde{J}) = \mathcal{Z}_G \exp\left(\frac{1}{2}\int \frac{d^D p}{(2\pi)^D} \tilde{J}(\boldsymbol{p}) \tilde{\Delta}^{-1}(\boldsymbol{p}) \tilde{J}(-\boldsymbol{p})
ight) ,$$

where the meaning of \mathcal{Z}_G should be explained and the explicit form for $\tilde{\Delta}(\mathbf{p})$ given.

State what is meant by the two-point connected correlation function $\langle \tilde{\phi}(\boldsymbol{q}) \tilde{\phi}(\boldsymbol{p}) \rangle_c$ and, using the expression for $\mathcal{Z}_0(\tilde{J})$, show that

$$\langle ilde{\phi}(m{q}) ilde{\phi}(m{p})
angle_c = (2\pi)^D \delta^{(D)}(m{p}+m{q}) ilde{G}_0(m{p}),$$

where the explicit expression for $\tilde{G}_0(\mathbf{p})$ should be given in the limit $\tilde{J} \to 0$.

State how the inverse Fourier transform, $G_0(\boldsymbol{x})$, of $\tilde{G}_0(\boldsymbol{p})$ behaves as $|\boldsymbol{x}| \to \infty$ and explain why the correlation length ξ of the theory is given by $\xi \propto 1/m$.

Let the external source be a constant $J(\mathbf{x}) = h$. Perform a suitable renormalization group transformation on the system that consists of a blocking step followed by a rescaling step, and determine how the coefficients κ, m and h transform.

The critical exponents α, β, γ and ν are defined by

$$C_V \sim |t|^{-\alpha}, \ M \sim |t|^{\beta} \ (t < 0), \ \chi \sim |t|^{-\gamma}, \ \xi \sim |t|^{-\nu},$$

where the identification $m^2 \propto t$ is made for $t = (T - T_C)/T_C$ small and T_C is the critical temperature. For D < 4 establish the relations

$$\alpha = (4-D)/2$$
, $\beta = (D-2)/4$, $\nu = 1/2$, $\gamma = 1$.

Verify that ν and γ agree with their predicted values in Landau-Ginsberg theory.

For $D \ge 4$ explain why the prediction for α is $\alpha = 0$ which agrees with the prediction of Landau–Ginsberg theory.

END OF PAPER