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Give an account of the Landau-Ginsberg (LG) theory of phase transitions in the
context of a scalar field theory which should include a discussion of the following points:

(i) the idea of an order parameter;

(ii) the distinction between first-order and continuous phase transitions and how their
defining properties are explained;

(iii) the idea of universality giving an example;

(iv) the idea of critical exponents and how they may be derived;

(v) the reason why a line of first order transitions must terminate in a critical point
associated with a continuous phase transition;

(vi) the explanation of the features of a two-dimensional phase diagram containing a
tricritical point in which you should identify a line of three-phase coexistence and
give a reason for its occurence.

Near to a continuous phase transition at T = TC , the critical exponents α, β, γ and
δ are defined by

Specific heat: CV ∼ |t|−α (h = 0), Magnetization: M ∼ |t|β (t < 0, h = 0),

Susceptibility: χ ∼ |t|−γ (h = 0), Magnetization: M ∼ |h|1/δ (t = 0),

where t = (T − TC)/TC and h is the applied magnetic field. Calculate α, β, γ and δ for a
tricritical point and verify the scaling relations

α+ 2β + γ = 2, βδ = β + γ.
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A spin model in D dimensions is defined on a cubic lattice of spacing a with N
sites and with spin σn on the n-th site. The Hamiltonian is defined in terms of a set of
operators Oi({σ}) by

H(u, σ) =
∑

i

uiOi({σ}) ,

where the ui are coupling constants with u = (u1, u2, . . .). In particular, H contains the
term −h

∑

n
σn where h is the magnetic field. The partition function is given by

Z(u, C,N) =
∑

σ

exp(−βH(u, σ)− βNC) .

Define the two-point correlation function G(r) for the theory and state how the
correlation length ξ parametrizes its behaviour as |r| → ∞. State how the susceptibility
χ can be expressed in terms of G(r).

Explain how the renormalization group (RG) transformation may be defined in
terms of a blocking kernel which, after p iterations, yields a blocked partition function
Z(up, Cp, Np) which predicts the same large-scale properties for the system as does
Z(u, C,N). State how a and N rescale in terms of the RG scale factor b.

Derive the RG equation for the free energy F (up, Cp), and explain how it may be
expressed in terms of a singular part, f(u), which obeys the RG equation

f(u0) = b−pDf(up) +

p−1
∑

j=0

b−jD g(uj) , p > 0 .

What is the origin of the function g(u) which determines the inhomogeneous part of the
transformation?

Explain the idea of a fixed point, relevant and irrelevant operators, a critical surface
and a repulsive trajectory in the context of the RG equations. Sketch some typical RG
flows near to a critical surface.

Show how the critical exponents characterizing a continuous phase transition may
be derived. In the case where there are two relevant couplings t = (T − TC)/TC and h,
and stating any assumptions you make, derive the scaling hypothesis for the free energy
near to a critical point:

F (u0, C0) = |t|D/λt

(

f±

(

h

|t|λh/λt

)

+ C±

)

+ I±(t) ,

where the meanings of λt, λh should be explained and the properties of the functions I±(t)
given. What is the significance of the subscript label ±?

Near to a critical point, for h = 0, the specific heat CV behaves like

CV ∼

{

A+|t|
−α t > 0

A−|t|
−α t < 0 ,

where α is the critical exponent. Explain why the amplitude ratio A+/A− is expected to
be universal.
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The critical exponents β, γ and ν are defined, for h = 0, by:

M ∼ |t|β (t < 0), χ ∼ |t|−γ , ξ ∼ |t|−ν ,

where M is the magnetization and χ is the susceptibility. Establish the scaling relations
α+ 2β + γ = 2 and α = 2−Dν.
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The Gaussian model in D dimensions for a real scalar field, φ(x), is defined by the
Hamiltonian density

H(φ(x)) =
1

2

[

κ−1(∇φ(x))2 +m2φ(x)2
]

− J(x)φ(x),

where κ and m are coupling constants and J(x) is a real external scalar field.

Find the Hamiltonian governing the Fourier transformed field φ̃(p), and show that
the partition function for the system is given by

Z0(J̃) = ZG exp

(

1

2

∫

dDp

(2π)D
J̃(p)∆̃−1(p)J̃(−p)

)

,

where the meaning of ZG should be explained and the explicit form for ∆̃(p) given.

State what is meant by the two-point connected correlation function 〈φ̃(q)φ̃(p)〉c
and, using the expression for Z0(J̃), show that

〈φ̃(q)φ̃(p)〉c = (2π)Dδ(D)(p+ q)G̃0(p),

where the explicit expression for G̃0(p) should be given in the limit J̃ → 0.

State how the inverse Fourier transform, G0(x), of G̃0(p) behaves as |x| → ∞ and
explain why the correlation length ξ of the theory is given by ξ ∝ 1/m.

Let the external source be a constant J(x) = h. Perform a suitable renormalization
group transformation on the system that consists of a blocking step followed by a rescaling
step, and determine how the coefficients κ,m and h transform.

The critical exponents α, β, γ and ν are defined by

CV ∼ |t|−α, M ∼ |t|β (t < 0), χ ∼ |t|−γ , ξ ∼ |t|−ν ,

where the identification m2 ∝ t is made for t = (T − TC)/TC small and TC is the critical
temperature. For D < 4 establish the relations

α = (4−D)/2 , β = (D − 2)/4 , ν = 1/2 , γ = 1 .

Verify that ν and γ agree with their predicted values in Landau-Ginsberg theory.

For D > 4 explain why the prediction for α is α = 0 which agrees with the prediction
of Landau–Ginsberg theory.
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