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The strong interactions are invariant under isospin SU(2) symmetry. Show how

to construct the space of states on which a (2I + 1)-dimensional irreducible SU(2)

representation acts, where I is an integer or half-integer. You may assume the generators

of the SU(2) Lie algebra, Ji (i = 1, 2, 3), satisfy [Ji, Jj ] = iǫijk Jk.

Show that the normalised states may be expressed in the form

|I,m〉 =

√

(I +m)!

(2I)!(I −m)!
(J−)

I−m |I, I〉 ,

where |I, I〉 is a highest weight state and J− = J1 − iJ2.

Consider a rotation, R(θ,n), through an angle θ around an axis defined by the unit

vector n in isospin space. Define (but you need not derive) the unitary operator U [R],

expressed in terms of the generators Ji, that represents this rotation on states |I,m〉.

Define matrices with elements D
(I)
m′m(θ,n) in terms of U [R] that furnish a (2I + 1)-

dimensional irreducible representation of R(θ ,n). Demonstrate that your definition

satisfies the necessary criteria for a representation.

Show that the matrix representation of J2 in the I = 1 case is given by a 3 × 3

matrix, J
(1)
2 , that satisfies (J

(1)
2 )3 = J

(1)
2 . Hence, or otherwise, show that a rotation θ = π

around the n = (0, 1, 0) axis may be represented by

D
(1)
m′m(n, π) = −(−1)m δm′,−m ,

and hence show that e−iπJ2 |1,m〉 = −(−1)m |1,−m〉.

Deduce how e−iπJ2 acts on the three pi meson states, |π0〉, |π+〉 and |π−〉, that form

an I = 1 multiplet.

The ‘charge conjugation’ operator C that relates particle states to antiparticle states

satisfies the relations

C J3 C
−1 = −J3 , C J1 C

−1 = −J1 , C J2 C
−1 = J2 .

Show that C Ji C
−1 satisfies the SU(2) algebra. Assuming that the m = 0 state of an

isospin multiplet satisfies C|π0〉 = |π0〉, show that C|π±〉 = −|π∓〉.

Show that the ‘G-parity’ operator G = C e−iπJ2 commutes with all the elements Ji
and is therefore independent of the m quantum number. Determine the value of G for the

pi meson states.
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The group SU(n) consists of n × n unitary complex matrices, Aα
β, where α, β =

1, . . . , n. How does a SU(n) (j, k)-tensor, T
α1...αj

β1...βk
, transform?

Show that the complex conjugate of a (j, k) tensor is a (k, j) tensor.

Demonstrate that the tensors δαβ , ǫ
α1...αn and ǫβ1...βn

are invariant under SU(n).

Show that the space of (j, k)-tensors contains invariant subspaces apart from the

cases (1, 0), (0, 1) and (0, 0).

Show that the dimension of the SU(n) representation formed by (j, 0)-tensors that

are symmetric on their upper indices is

(n+ j − 1)!

j!(n − 1)!
.

Determine the dimension of the space of tensors with j anti-symmetrised upper

indices, T [α1...αj ].

Explain why there is a real 6-dimensional representation of SU(4).

Briefly explain why irreducible representations of symmetry groups are relevant for

classifying elementary particles.

Discuss which irreducible representations of SU(3) are present in the spectrum of

low lying baryon states in QCD in the approximation that keeps only the light quarks

(u, d, s). Ignore orbital angular momentum, but not quark spin.
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Define the adjoint representation of a Lie algebra, g, of a group G of dimension d,

and show that it satisfies the properties necessary for it to be a representation of g.

Consider a basis for a representation of g, Ta (a = 1, . . . , d). Let e−X Y eX =

(eX
ad
)ab Yb Ta, where X = Xa Ta and Y = Ya Ta are elements of g and Xad = Xa T

ad
a is

the matrix corresponding to X in the adjoint representation. Show that the matrices eX
ad

satisfy the conditions to form a representation of G.

Show that there is a basis in which the generators of g may be identified with the

structure constants of the Lie algebra.

Define the Killing form for a Lie algebra. Show that it is degenerate (has vanishing

determinant) for a non-semi-simple algebra. Explain, without giving a proof, why the

Killing form of a compact semi-simple algebra is strictly negative. [You may assume

that the irreducible representations of a compact Lie group are isomorphic to unitary

representations.]

A Lie algebra has basis vectors {X,Y,H}, where [X,Y ] = 2H, [X,H] = 2Y and

[Y,H] = 2X. Find the adjoint representation of these elements and determine the Killing

form of the algebra in this basis. Is this the algebra of a compact semi-simple Lie group?

Now consider the algebra [X,Y ] = 2H, [X,H] = −2Y and [Y,H] = 2X. Comment

on the Killing form in this case.
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Show how a Lorentz transformation of Minkowski space coordinates, x′µ = Λµ
ν x

ν

(µ = 0, . . . , 3), can be expressed in the form X → X ′ = A(Λ)X A(Λ)†, where A(Λ) is a

SL(2, C) matrix and X = σµx
µ (with σµ = (I, σi)).

Show that the transformation given by the SL(2, C) matrix

AB(θ,n) = cosh
1

2
θ I + sinh

1

2
θ σini

describes a Lorentz boost of xµ along an axis defined by the unit three-vector n = {ni}

with velocity v = tanh θn.

Demonstrate that the result of two successive Lorentz boosts with velocities v and

v′ along two distinct axes, n and n′, is not purely a Lorentz boost unless n = ±n′.

The Lie algebra of the Lorentz group can be written

[Mµν ,Mρσ ] = i (ηνρMµσ − ηµρMνσ + ηµσMνρ − ηνσMµρ) ,

where Mµν = −Mνµ and ηµν = diag(1,−1,−1,−1) is the Minkowski metric. Show that

this may be decomposed into the sum of two subalgebras for the groups SU(2)L and

SU(2)R.

Verify that the SL(2, C) matrix

A = I +
1

4
ωµν σµ σ̄ν +O(ω2) , (ωµν = −ωνµ)

where σ̄µ = (I,−σi), corresponds to the infinitesimal transformation xµ → xµ + ω
µ
ν x

ν +

O(ω2). Deduce that there are two inequivalent two-component complex representations of

SL(2, C), ψL and ψR, and determine how they transform under Lorentz transformations

with parameters Λµ
ν = (expω)µν .

Show that the four-component spinor ψ =

(

ψL

ψR

)

transforms as

ψ → exp
(

1
4 ω

µν γµν
)

ψ ,

under Lorentz transformations, where γµν = 1
2 (γµγν − γνγµ) and γµ are 4×4 Dirac gamma

matrices.

Prove that

e
1

4
ωµν γµν γρ e−

1

4
ωµν γµν = Λρ

µ γ
µ ,

and hence show that under Lorentz transformations: (i) ψ̄ ψ transforms as a scalar; (ii)

ψ̄ γµ ψ transforms as a vector; (iii) ψ̄ i[γµ , γν ]ψ transforms as a second rank tensor.

[The Pauli matrices satisfy σi σj = δij I + iǫijk σk, where I is the 2× 2 unit matrix

and i = 1, 2, 3. You may also assume that the Dirac matrices can be represented by

γµ =

(

0 σµ
σ̄µ 0

)

,

In this representation ψ̄ = ψ† γ0 and γµ† γ0 = γ0 γµ.]
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