MATHEMATICAL TRIPOS Part III

Monday, 11 June, 2012 9:00 am to 11:00 am

PAPER 44

OPTIMAL INVESTMENT

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let \mathcal{P} be the set of probability measures on the measurable space (E, \mathcal{E}) . Let $U_0 : \mathcal{P} \to \mathbb{R}$ be a fixed affine function, and define a preference relation \succ on \mathcal{P} by the rule

 $\mathbf{2}$

$$\lambda \succ \mu \Leftrightarrow U_0(\lambda) > U_0(\mu).$$

(a) Show that if $\lambda \succ \mu$ then

$$p\lambda + (1-p)\nu \succ p\mu + (1-p)\nu$$

for any $0 and any <math>\nu \in \mathcal{P}$.

(b) Show that if $\lambda \succ \mu \succ \nu$ then there exists a 0 such that

$$\mu \sim p\lambda + (1-p)\nu$$

(c) Suppose $V_0: \mathcal{P} \to \mathbb{R}$ is affine and has the property that

$$\lambda \succ \mu \Leftrightarrow V_0(\lambda) > V_0(\mu)$$

Show that there are constants a > 0 and b such that

$$V_0(\lambda) = aU_0(\lambda) + b$$

for all $\lambda \in \mathcal{P}$.

(d) Suppose that E is a finite set. Show that there exists a function $U: E \to \mathbb{R}$ such that

$$U_0(\lambda) = \int_E U(x)\lambda(dx).$$

CAMBRIDGE

 $\mathbf{2}$

Let U be a utility function that is twice-differentiable, strictly increasing and strictly concave on the interval $(0,\infty)$ and such that the Inada conditions hold. Let the dual function \hat{U} be defined by

$$\hat{U}(y) = \sup_{x>0} [U(x) - xy].$$

(a) Show that \hat{U} is twice-differentiable, strictly decreasing and strictly convex. Show that if U'(x) = y then $\hat{U}'(y) = -x$ and $U''(x)\hat{U}''(y) = -1$.

(b) Let $P = (P_t)_{t \in \{0,1\}}$ be a one-period market model defined on a finite probability space, and let Z be a state price density. Show that that for any portfolio H such that $H \cdot P_0 = x$, the inequality

$$\mathbb{E}[U(H \cdot P_1)] \leqslant \mathbb{E}[\hat{U}(yZ)] + yx$$

holds for all y > 0. Hence, conclude that H^* is optimal for the problem

maximise $\mathbb{E}[U(H \cdot P_1)]$ subject to $H \cdot P_0 = x$,

if $U'(H^* \cdot P_1) = y^* Z^*$ a.s. for some constant $y^* > 0$ and state price density Z^* .

(c) Consider a two asset market with prices P = (B, S). Both assets have initial price $B_0 = S_0 = 5$. The first asset is riskless with $B_1 = 6$, but the second is risky with distribution $\mathbb{P}(S_1 = 7) = 1/2 = \mathbb{P}(S_1 = 4)$. Find the unique state price density.

(d) An investor in the market described in part (c) has a utility maximising portfolio $H^* = (+4, -3)$, i.e. long 4 shares of the riskless asset and short 3 shares of the risky one. Assuming that his utility function is of the CRRA form $U(x) = \frac{x^{1-R}}{1-R}$ where $R > 0, R \neq 1$, find the relative risk aversion coefficient R.

CAMBRIDGE

3

Consider a discrete time market with two assets. The first is cash with price $B_t = 1$ a.s. for all $t \ge 0$. The second is a risky asset with prices $(S_t)_{t\ge 0}$.

4

(a) Explain why a self-financing investor's wealth X_t evolves as

$$X_t = X_{t-1} + \pi_t \Delta S_t$$

where $\Delta S_t = S_t - S_{t-1}$ and π_t is the number of shares of the risky asset held during the period (t-1,t].

(b) Suppose $(\Delta S_t)_{t \ge 1}$ is a sequence of independent $N(\mu, \sigma^2)$ random variables, generating the filtration. Fix a time horizon T > 0 and find the optimal trading strategy for the problem

maximise
$$\mathbb{E}[U(X_T)]$$
 over $(\pi_t)_{1 \leq t \leq T}$ given X_0

where $U(x) = -e^{-\gamma x}$ for a constant $\gamma > 0$.

(c) The investor is now offered the opportunity to enter into an income swap contract. If he agrees to enter into the contract, he would receive the random income stream $(Y_t)_{1 \leq t \leq T}$ but must pay a fixed payment of y each period, so that his wealth evolves as

$$X_t = X_{t-1} + \pi_t \Delta S_t + Y_t - y_t$$

Assume that $(Y_t, \Delta S_t)_{1 \le t \le T}$ is a sequence of independent random vectors generating the filtration, where

$$\left(\begin{array}{c} Y_t\\ \Delta S_t\end{array}\right) \sim N\left(\left(\begin{array}{c} a\\ \mu\end{array}\right), \left(\begin{array}{c} b^2 & \rho b\sigma\\ \rho b\sigma & \sigma^2\end{array}\right)\right).$$

Find the optimal trading strategy for the investor if he enters into the swap contract.

(d) Show that the investor would prefer not to enter into the swap contract if $y > a - \mu \rho b / \sigma - \gamma b^2 (1 - \rho^2) / 2$.

UNIVERSITY OF

 $\mathbf{4}$

Let $(P_t)_{t\geq 0}$ be a *n*-dimensional Itô process modelling the prices of *n* assets.

(a) Explain why a self-financing investor's time-t wealth X_t satisfies the two equations

$$X_t = H_t \cdot P_t$$
$$dX_t = H_t \cdot dP_t - c_t dt$$

where H_t is the investor's portfolio and c_t is his consumption rate at time t.

(b) Let $(Z_t)_{t \ge 0}$ be a state price density. Show that

$$d(Z_t X_t) = H_t \cdot d(Z_t P_t) - Z_t c_t dt$$

(c) Assume that the pair (H, c) are such that the investor's wealth is always non-negative. Using standard results from stochastic calculus, show that the stochastic integral

$$M_t = \int_0^t H_s \cdot d(Z_s P_s)$$

defines a supermartingale.

(d) Prove that

$$\mathbb{E}\left(\int_0^\infty Z_t c_t \ dt\right) \leqslant X_0.$$

(e) Use Hölder's inequality to show that

$$\mathbb{E}\left(\int_0^\infty e^{-bt} U(c_t) dt\right) \leqslant U(X_0) \left[\mathbb{E}\left(\int_0^\infty e^{-bt/R} Z_t^{1-1/R} dt\right)\right]^R$$

where $U(c) = \frac{c^{1-R}}{1-R}$ and 0 < R < 1.

END OF PAPER

Part III, Paper 44