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1

In a (one-factor) interest-rate model, the riskless rate rt of interest solves the
stochastic differential equation

drt = σ
√
rt dBt + (a− brt) dt,

where B is a standard Brownian motion in the pricing measure, and σ, a and b are positive
constants. Derive an explicit expression for the time-0 price of a zero-coupon bond which
matures at T > 0.

Briefly discuss the main features, good and bad, of this particular model.

2

What is a futures contract? Briefly explain how a futures contract operates.

Supposing that a futures contract with expiry T is written on an underlying asset
whose spot price at time t is St, derive an expression for the price FtT at time t < T of
this futures contract. Explain the meaning of the terms contango and backwardation.

Suppose that the d-dimensional process X satisfies the linear stochastic differential
equation

dXt = dBt −AXt dt

where B is a standard d-dimensional Brownian motion in the pricing measure, and A is
a d× d matrix. Find the form of the solution X as explicitly as you can, and specify the
distribution of Xt.

If the spot price of the underlying asset is expressed as

St = exp(b ·Xt)

for some fixed vector b ∈ R
d, find the form of the futures price FtT in terms of Xt as

explicitly as you can.
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Assume that E(X) = E(X ′) = 0.

Suppose that X and X ′ are two square-integrable random variables with positive
variance. Define the correlation ρ(X,X ′) between them. Prove that ρ(X,X ′) = 1 if and
only if X = aX ′ for some a > 0. (We say that X and X ′ are perfectly correlated if
ρ(X,X ′) = 1).

Suppose that St and S′

t are two stock price processes, solving the stochastic
differential equations

dSt = St

(

σt dBt + rt dt
)

dS′

t = S′

t

(

σ′

t dBt + rt dt
)

in the pricing measure, where σ, σ′ and r are adapted processes, and B is a common

standard Brownian motion.

(i) Assuming that the processes σ and σ′ are both constant, prove that for each t > 0
the random variables St and S′

t are perfectly correlated if and only if σ = σ′.

(ii) Suppose that r = 0, and that σ and σ′ are bounded, but not assumed constant. If
S0 = S′

0 > 0, and S1 and S′

1 are perfectly correlated, prove that
∫ 1
0 (σt − σ′

t)
2 dt = 0

almost surely.

(iii) If the processes σ and σ′ are not assumed constant, and are supposed to be different
(in the sense that P (

∫ t
0 (σs−σ′

s)
2 ds = 0) < 1), can it be that St and S′

t are perfectly
correlated? Explain your answer.
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Suppose that X is a one-dimensional Ornstein-Uhlenbeck process, solving the
stochastic differential equation

dXt = σdBt − λXt dt

where σ and λ are positive constants, and suppose that

f(x) = a+ 1
2x

2

where a > 0. Find a condition on α > 0 which guarantees that the process

ζt ≡ e−αtf(Xt)

is a supermartingale.

Assuming this condition is satisfied, explain how the process ζ can be used to
determine a pricing system. In this pricing system, express the riskless rate explicitly in
terms of X, and find the time-0 price of a zero-coupon bond maturing at T > 0.

Comment briefly on the suitability of this model as a model for interest rates.
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Suppose that U : R → (−∞, 0) is strictly increasing, concave and continuously
differentiable. Let X be the (random) gain from investing in an asset from time 0 to time
1. An investor may choose any number θ, positive or negative, of units of the asset to
hold from time 0 to time 1. The distribution of X is known at time 0, but not its actual
value, which will be revealed at time 1. Suppose that the investor’s objective

F (θ) = E U(θX) (θ ∈ R)

is everywhere finite-valued, and assume that the distribution of X is not degenerate.

(i) Prove that F is concave.

(ii) Prove that F is continuously differentiable with derivative

F ′(θ) = E[XU ′(θX)].

(iii) Prove that either there exists some positive integrable Z such that E[XZ] = 0 or

one of X, −X is almost surely non-negative.

Now suppose that the investor has to pay a proportional non-negative transaction cost ε,
so that the investor’s objective changes to

G(θ) = E U(θX − ε|θ|),

again assumed finite-valued.

(i) Prove that G is concave.

(ii) Prove that G is differentiable except possibly at zero, with derivative

G′(θ) =

{

E[U ′(θ(X − ε))(X − ε)] (θ > 0)

E[U ′(θ(X + ε))(X + ε)] (θ < 0)

(iii) Prove that either there exists some positive integrable Z such that E[XZ] ∈ [−ε, ε];
or one of X − ε, −X − ε is almost surely non-negative.
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(i) Suppose that Xt = Bt+ct, where B is a standard Brownian motion, c a constant,
and set Ha ≡ inf{t : Xt = a} for a > 0. State without proof the density of Ha when c = 0.
Stating carefully any results to which you appeal, show that for general c the density of
Ha is

P (Ha ∈ dt)/dt =
ae−(a−ct)2/2t

√
2πt3

,

and hence verify that

P (Ha 6 T ) = Φ̄

(

a− cT√
T

)

+ e2ac Φ

(−a− cT√
T

)

.

where Φ is the cumulative distribution function of the N(0, 1) distribution, and Φ̄(x) =
1− Φ(x).

(ii) In a Black-Scholes model, the price St at time t of a stock is given by

St = exp(σBt + (r − 1
2σ

2)t )

where σ > 0 and r are constants. A bank sells a derivative which will pay 1 at the time
τ ≡ inf{t : St > eσa} if that time happens before the expiry T > 0, otherwise it pays
nothing. Calculate the time-0 price of this derivative. (Assume a > 0.)

END OF PAPER
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