

MATHEMATICAL TRIPOS Part III

Wednesday, 6 June, 2012 1:30 pm to 4:30 pm

PAPER 4

COMMUTATIVE ALGEBRA

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight. All rings are understood to be commutative, unless stated otherwise.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Let R be a reduced ring such that Spec(R) is not empty and not connected (as a topological space). Show that R is isomorphic to the product of two nonzero rings.

 $\mathbf{2}$

(b) Let R be a normal domain. Let G be a finite group which acts on R by automorphisms. Show that the ring of invariants $R^G = \{f \in R : g(f) = f \text{ for all } g \in G\}$ is normal.

$\mathbf{2}$

Let $f : A^1_{\mathbf{R}} \to A^1_{\mathbf{R}}$ be the morphism of affine schemes over the real numbers \mathbf{R} defined by $x \mapsto x^4$. For each closed point p in $A^1_{\mathbf{R}}$, compute the number of irreducible components of the closed subscheme $f^{-1}(p)$. How many isomorphism classes of affine schemes over \mathbf{R} arise as $f^{-1}(p)$ for closed points p in $A^1_{\mathbf{R}}$?

3

Show that any prime ideal in $\mathbb{C}[x, y, z]$ of codimension r can be generated by r elements if r = 1 or r = 3. [You may use results from the course.]

On the other hand, show that the kernel of the C-algebra homomorphism $\mathbf{C}[x, y, z] \rightarrow \mathbf{C}[t]$ given by $x \mapsto t^3$, $y \mapsto t^4$, $z \mapsto t^5$ is a codimension-2 prime ideal in $\mathbf{C}[x, y, z]$ that cannot be generated by 2 elements.

$\mathbf{4}$

(a) Show that every vector space V over a field k is free as a k-module. [Give a complete proof, without quoting any results from linear algebra. Note that V is not assumed to be finite-dimensional.]

(b) Let f be an irreducible polynomial in $k[x_1, \ldots, x_n]$, for a field k and a positive integer n. Show that the hypersurface $X = \{f = 0\} \subset A_k^n$ admits a finite flat morphism to affine (n-1)-space over k.

UNIVERSITY OF

 $\mathbf{5}$

(a) Let K be a finitely generated ${\bf Z}\mbox{-algebra}$ which is a field. Show that K is a finite field.

(b) Let R be a finitely generated **Z**-algebra. Show that the Jacobson radical (the intersection of all maximal ideals) of R is equal to the nilradical of R. [You may use (a) and results from the course, but do not use other results.]

END OF PAPER