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(a) Let R be a reduced ring such that Spec(R) is not empty and not connected (as
a topological space). Show that R is isomorphic to the product of two nonzero rings.

(b) Let R be a normal domain. Let G be a finite group which acts on R by
automorphisms. Show that the ring of invariants RG = {f ∈ R : g(f) = f for all g ∈ G}
is normal.

2

Let f : A1

R
→ A1

R
be the morphism of affine schemes over the real numbers R

defined by x 7→ x4. For each closed point p in A1

R
, compute the number of irreducible

components of the closed subscheme f−1(p). How many isomorphism classes of affine
schemes over R arise as f−1(p) for closed points p in A1

R
?

3

Show that any prime ideal in C[x, y, z] of codimension r can be generated by r

elements if r = 1 or r = 3. [You may use results from the course.]

On the other hand, show that the kernel of theC-algebra homomorphismC[x, y, z] →
C[t] given by x 7→ t3, y 7→ t4, z 7→ t5 is a codimension-2 prime ideal in C[x, y, z] that
cannot be generated by 2 elements.

4

(a) Show that every vector space V over a field k is free as a k-module. [Give a
complete proof, without quoting any results from linear algebra. Note that V is not assumed
to be finite-dimensional.]

(b) Let f be an irreducible polynomial in k[x1, . . . , xn], for a field k and a positive
integer n. Show that the hypersurface X = {f = 0} ⊂ An

k
admits a finite flat morphism

to affine (n− 1)-space over k.
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(a) Let K be a finitely generated Z-algebra which is a field. Show that K is a finite
field.

(b) Let R be a finitely generated Z-algebra. Show that the Jacobson radical (the
intersection of all maximal ideals) of R is equal to the nilradical of R. [You may use (a)
and results from the course, but do not use other results.]
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