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1

For H a class of real-valued functions defined on R
d, state a uniform in H law of

large numbers under a bracketing covering assumption on H. [You do not have to prove
the result.]

Suppose now Θ is a bounded and closed subset of Rp, and let q(θ, x) : Θ×R
d → R be

continuous in θ for each x and measurable in x for each θ. If X,X1, ...,Xn are i.i.d. random
vectors in R

d and if
E sup

θ∈Θ
|q(θ,X)| <∞ (1)

prove that, as n→ ∞,

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

q(θ,Xi)− Eq(θ,X)

∣

∣

∣

∣

∣

→ 0 almost surely

[Hint: You may use the bracketing uniform law of large numbers without proof. You may

also use without proof the Heine-Borel and the dominated convergence theorems in your

justification.]

Considering q(θ, x) = log f(θ, x) and an exponential family of order 1,

f(θ, x) = eθx−K(θ)f0(x), θ ∈ Θ, x ∈ R,

with f0 a fixed probability density and K the cumulant generating function, devise weak
assumptions on K, f0 such that the domination condition (1) is satisfied.

2

Let PΘ = {f(θ, ·) : θ ∈ Θ} be a parametric statistical model of probability density
functions f(θ, y) : Θ × R → [0,∞) indexed by an open subset Θ of Rp. Define what it
means for PΘ to be locally asymptotically normal (LAN). Informally discuss conditions
on the first and second derivatives of the mapping θ 7→ log f(θ, y) that ensure that PΘ is
LAN, and sketch a proof of this argument.

For two sequences of probability measures Pn, Qn on a measurable space, define the
concept of mutual contiguity of Pn and Qn. For h ∈ R

p let now Pn
θ+h/

√
n
and Pn

θ be the

product probability measures describing the joint distribution of i.i.d. samples Y1, . . . , Yn
drawn from Pθ+h/

√
n and Pθ in PΘ, respectively. Prove that if PΘ is LAN then Pθ+h/

√
n and

Pθ are mutually contiguous for every θ ∈ Θ. Deduce that if an estimator θ̂n = θ̂(Y1, . . . , Yn)
is consistent for θ under Pθ then it is also consistent for θ under Pθ+h/

√
n. [You may use

without proof Le Cam’s first lemma, provided it is clearly stated.]
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Consider X1, . . . ,Xn i.i.d. random variables drawn from an unknown probability
density f . Define the kernel density estimator fKn (h) for f with kernelK and bandwidth h.
Assuming that K is compactly supported and symmetric and that f is square integrable
and twice differentiable with ‖D2f‖22 =

∫

R
(D2f(x))2dx < ∞, carefully prove that the

mean-integrated squared error (MISE) E
∫

R
(fKn (h, x) − f(x))2dx can be bounded by

1

nh

∫

R

K2(u)du+ (1/3)h4‖D2f‖22
(
∫

R

u2K(u)du

)2

.

[You may use without proof Fubini’s and Taylor’s theorem in your justification.]

Give the rate of convergence in MISE obtained from optimising this risk bound.
Assuming that f is three times continuously differentiable with bounded derivatives,
discuss a heuristic to estimate ‖D2f‖22 from the sample. Can you expect that your estimate
attains a rate of estimation for ‖D2f‖22 of order 1/

√
n?

4

Suppose we are given a model P of probability densities, and a random sample
X1, . . . ,Xn, n > 2, from f ∈ P, where P is equipped with some metric d. Let Pf ≡ Pn

f

be the joint distribution of X1, . . . ,Xn, and denote by Ef expectation with respect to Pf .
Consider any estimator fn(x) = f(x;X1, . . . ,Xn) for f(x). For rn a sequence of positive
real numbers and f0, f1 two probability densities in P such that d(f0, f1) > 2rn for every
n, prove that for every η > 0 and every n ∈ N

inf
fn

sup
f∈P

r−1
n Efd(fn, f) >

1− η

2

(

1− Ef0 |Z − 1|
η

)

where Z is the likelihood ratio
dPf1

dPf0

=

n
∏

i=1

f1(Xi)

f0(Xi)
.

Now consider

Ψ = {ψ : [0, 1] → R, sup
x∈[0,1]

|ψ(x)| 6 1,

∫ 1

0
ψ = 0}

and consider the family of probability densities PΨ = {f = 1 + ψ : ψ ∈ Ψ} on [0, 1]
equipped with the L2-metric d2(f, g) =

∫ 1
0 (f(x)− g(x))2dx. Prove that for every n ∈ N

inf
fn

sup
f∈PΨ

√
nEfd(fn, f) > c > 0

for some c > 0.
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Define the fixed and random design regression models. Carefully define the
Nadaraya-Watson estimator and the local polynomial regression estimator. What is the
relationship between these two estimators?

Let now m̂n(x) be the local polynomial regression estimator of order ℓ of a regression
function m : [0, 1] → R, based on a bounded compactly supported kernel K and a
bandwidth h. Suppose m has s bounded derivatives and that nh > 1 for all n. Prove that
for some constant c > 0,

E|m̂n(x)−m(x)| 6 c[(nh)−1/2 + hs]

if one has a sample (Y1, x1), . . . , (Yn, xn) with equally spaced fixed design points xi =
i/n, i = 1, . . . , n.

[Hint: You may use the fact that m̂n(x) =
∑n

i=1Wni(x)Yi for

Wni(x) =
1

nh
UT (0)B−1U

(

Xi − x

h

)

K

(

Xi − x

h

)

,

where B ≡ Bn is an invertible matrix with eigenvalues bounded away from zero uniformly

in n, and where UT (t) = (1, t, t2/2!, . . . , tℓ/ℓ!). You may further use without proof that

n
∑

i=1

Q(xi)Wni(x) = Q(x)

for any polynomial Q of degree less than or equal to ℓ and every x ∈ [0, 1].]
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Let SD ⊂ S where S is a normed space with norm ‖ · ‖S and let Φ be a real-valued
mapping defined on SD. Define the notion of Hadamard-differentiability of Φ at a point
s0 ∈ SD. Let rn → ∞ as n → ∞, and let Xn be random variables taking values in
S such that rn(Xn − s0) converges in distribution to some random variable X in S as
n → ∞. Derive the asymptotic distribution of rn(Φ(Xn) − Φ(s0)) as n → ∞. [You may
use without proof Skorohod’s almost sure representation theorem in metric spaces in the
proof, provided it is carefully stated.]

Let now S = C(R) be the space of bounded continuous functions on R, equipped
with the supremum norm. Prove that for every u > 0 the mapping

(F,G) 7→
∫ u

0
G(x)DF (x)dx

is Hadamard-differentiable on SD × SD ⊂ C(R)× C(R) where

SD = {F ∈ C1(R) :

∫

|F ′(x)|dx 6 1}

and where C1(R) is the space of bounded continuously differentiable functions on R with
a bounded derivative.
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