MATHEMATICAL TRIPOS Part III

Thursday, 7 June, $2012 \quad 9{:}00 \ \mathrm{am}$ to $12{:}00 \ \mathrm{pm}$

PAPER 39

STATISTICAL THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

For \mathcal{H} a class of real-valued functions defined on \mathbb{R}^d , state a uniform in \mathcal{H} law of large numbers under a bracketing covering assumption on \mathcal{H} . [You do not have to prove the result.]

Suppose now Θ is a bounded and closed subset of \mathbb{R}^p , and let $q(\theta, x) : \Theta \times \mathbb{R}^d \to \mathbb{R}$ be continuous in θ for each x and measurable in x for each θ . If $X, X_1, ..., X_n$ are i.i.d. random vectors in \mathbb{R}^d and if

$$E \sup_{\theta \in \Theta} |q(\theta, X)| < \infty \tag{1}$$

prove that, as $n \to \infty$,

$$\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} q(\theta, X_i) - Eq(\theta, X) \right| \to 0 \quad \text{almost surely}$$

[Hint: You may use the bracketing uniform law of large numbers without proof. You may also use without proof the Heine-Borel and the dominated convergence theorems in your justification.]

Considering $q(\theta, x) = \log f(\theta, x)$ and an exponential family of order 1,

$$f(\theta, x) = e^{\theta x - K(\theta)} f_0(x), \theta \in \Theta, \quad x \in \mathbb{R},$$

with f_0 a fixed probability density and K the cumulant generating function, devise weak assumptions on K, f_0 such that the domination condition (1) is satisfied.

$\mathbf{2}$

Let $\mathcal{P}_{\Theta} = \{f(\theta, \cdot) : \theta \in \Theta\}$ be a parametric statistical model of probability density functions $f(\theta, y) : \Theta \times \mathbb{R} \to [0, \infty)$ indexed by an open subset Θ of \mathbb{R}^p . Define what it means for \mathcal{P}_{Θ} to be locally asymptotically normal (LAN). Informally discuss conditions on the first and second derivatives of the mapping $\theta \mapsto \log f(\theta, y)$ that ensure that \mathcal{P}_{Θ} is LAN, and sketch a proof of this argument.

For two sequences of probability measures P_n, Q_n on a measurable space, define the concept of mutual contiguity of P_n and Q_n . For $h \in \mathbb{R}^p$ let now $P_{\theta+h/\sqrt{n}}^n$ and P_{θ}^n be the product probability measures describing the joint distribution of i.i.d. samples Y_1, \ldots, Y_n drawn from $P_{\theta+h/\sqrt{n}}$ and P_{θ} in \mathcal{P}_{Θ} , respectively. Prove that if \mathcal{P}_{Θ} is LAN then $P_{\theta+h/\sqrt{n}}$ and P_{θ} are mutually contiguous for every $\theta \in \Theta$. Deduce that if an estimator $\hat{\theta}_n = \hat{\theta}(Y_1, \ldots, Y_n)$ is consistent for θ under P_{θ} then it is also consistent for θ under $P_{\theta+h/\sqrt{n}}$. [You may use without proof Le Cam's first lemma, provided it is clearly stated.]

2

CAMBRIDGE

3

Consider X_1, \ldots, X_n i.i.d. random variables drawn from an unknown probability density f. Define the kernel density estimator $f_n^K(h)$ for f with kernel K and bandwidth h. Assuming that K is compactly supported and symmetric and that f is square integrable and twice differentiable with $\|D^2 f\|_2^2 = \int_{\mathbb{R}} (D^2 f(x))^2 dx < \infty$, carefully prove that the mean-integrated squared error (MISE) $E \int_{\mathbb{R}} (f_n^K(h, x) - f(x))^2 dx$ can be bounded by

$$\frac{1}{nh} \int_{\mathbb{R}} K^2(u) du + (1/3)h^4 \|D^2 f\|_2^2 \left(\int_{\mathbb{R}} u^2 K(u) du \right)^2.$$

[You may use without proof Fubini's and Taylor's theorem in your justification.]

Give the rate of convergence in MISE obtained from optimising this risk bound. Assuming that f is three times continuously differentiable with bounded derivatives, discuss a heuristic to estimate $||D^2 f||_2^2$ from the sample. Can you expect that your estimate attains a rate of estimation for $||D^2 f||_2^2$ of order $1/\sqrt{n}$?

$\mathbf{4}$

Suppose we are given a model \mathcal{P} of probability densities, and a random sample $X_1, \ldots, X_n, n > 2$, from $f \in \mathcal{P}$, where \mathcal{P} is equipped with some metric d. Let $P_f \equiv P_f^n$ be the joint distribution of X_1, \ldots, X_n , and denote by E_f expectation with respect to P_f . Consider any estimator $f_n(x) = f(x; X_1, \ldots, X_n)$ for f(x). For r_n a sequence of positive real numbers and f_0, f_1 two probability densities in \mathcal{P} such that $d(f_0, f_1) \ge 2r_n$ for every n, prove that for every $\eta > 0$ and every $n \in \mathbb{N}$

$$\inf_{f_n} \sup_{f \in \mathcal{P}} r_n^{-1} E_f d(f_n, f) \ge \frac{1 - \eta}{2} \left(1 - \frac{E_{f_0} |Z - 1|}{\eta} \right)$$

where Z is the likelihood ratio

$$\frac{dP_{f_1}}{dP_{f_0}} = \prod_{i=1}^n \frac{f_1(X_i)}{f_0(X_i)}.$$

Now consider

$$\Psi = \{\psi : [0,1] \to \mathbb{R}, \sup_{x \in [0,1]} |\psi(x)| \le 1, \int_0^1 \psi = 0\}$$

and consider the family of probability densities $\mathcal{P}_{\Psi} = \{f = 1 + \psi : \psi \in \Psi\}$ on [0,1] equipped with the L^2 -metric $d^2(f,g) = \int_0^1 (f(x) - g(x))^2 dx$. Prove that for every $n \in \mathbb{N}$

$$\inf_{f_n} \sup_{f \in \mathcal{P}_{\Psi}} \sqrt{n} E_f d(f_n, f) \ge c > 0$$

for some c > 0.

Part III, Paper 39

UNIVERSITY OF

 $\mathbf{5}$

Define the fixed and random design regression models. Carefully define the Nadaraya-Watson estimator and the local polynomial regression estimator. What is the relationship between these two estimators?

Let now $\hat{m}_n(x)$ be the local polynomial regression estimator of order ℓ of a regression function $m : [0,1] \to \mathbb{R}$, based on a bounded compactly supported kernel K and a bandwidth h. Suppose m has s bounded derivatives and that $nh \ge 1$ for all n. Prove that for some constant c > 0,

$$E|\hat{m}_n(x) - m(x)| \leq c[(nh)^{-1/2} + h^s]$$

if one has a sample $(Y_1, x_1), \ldots, (Y_n, x_n)$ with equally spaced fixed design points $x_i = i/n, i = 1, \ldots, n$.

[Hint: You may use the fact that $\hat{m}_n(x) = \sum_{i=1}^n W_{ni}(x)Y_i$ for

$$W_{ni}(x) = \frac{1}{nh} U^T(0) B^{-1} U\left(\frac{X_i - x}{h}\right) K\left(\frac{X_i - x}{h}\right),$$

where $B \equiv B_n$ is an invertible matrix with eigenvalues bounded away from zero uniformly in n, and where $U^T(t) = (1, t, t^2/2!, ..., t^{\ell}/\ell!)$. You may further use without proof that

$$\sum_{i=1}^{n} Q(x_i) W_{ni}(x) = Q(x)$$

for any polynomial Q of degree less than or equal to ℓ and every $x \in [0, 1]$.

UNIVERSITY OF

6

Let $S_D \subset S$ where S is a normed space with norm $\|\cdot\|_S$ and let Φ be a real-valued mapping defined on S_D . Define the notion of Hadamard-differentiability of Φ at a point $s_0 \in S_D$. Let $r_n \to \infty$ as $n \to \infty$, and let X_n be random variables taking values in S such that $r_n(X_n - s_0)$ converges in distribution to some random variable X in S as $n \to \infty$. Derive the asymptotic distribution of $r_n(\Phi(X_n) - \Phi(s_0))$ as $n \to \infty$. [You may use without proof Skorohod's almost sure representation theorem in metric spaces in the proof, provided it is carefully stated.]

Let now $S = C(\mathbb{R})$ be the space of bounded continuous functions on \mathbb{R} , equipped with the supremum norm. Prove that for every u > 0 the mapping

$$(F,G)\mapsto \int_0^u G(x)DF(x)dx$$

is Hadamard-differentiable on $S_D \times S_D \subset C(\mathbb{R}) \times C(\mathbb{R})$ where

$$S_D = \{F \in C^1(\mathbb{R}) : \int |F'(x)| dx \leqslant 1\}$$

and where $C^1(\mathbb{R})$ is the space of bounded continuously differentiable functions on \mathbb{R} with a bounded derivative.

END OF PAPER