MATHEMATICAL TRIPOS Part III

Friday, 8 June, 2012 9:00 am to 11:00 am

PAPER 38

TIME SERIES AND MONTE CARLO INFERENCE

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

- 1
- (i). Let (X_t) be a stationary time series with autocovariance function $(\gamma_k : k = 0, 1, ...)$. Under what condition on (γ_k) does a spectral density function $f_X : [0, \pi] \to [0, \infty)$ exist? Assuming this condition is satisfied, write down the expressions for $f_X(\omega)$ in terms of the (γ_k) , and for γ_k in terms of f_X .
- (ii). The process (Y_t) is defined by:

$$Y_t = \sum_{s=-\infty}^{\infty} a_s X_{t-s}$$

where (a_t) is a sequence of real numbers such that $\sum_{s=-\infty}^{\infty} |a_s| < \infty$. Show that the spectral density function f_Y of Y is given by

$$f_Y(\omega) = |\alpha(\omega)|^2 f_X(\omega)$$

where $\alpha(\omega) = \sum_{s=-\infty}^{\infty} a_s e^{is\omega}$.

- (iii). What is meant by saying that (X_t) is a ARMA(p,q) process with autoregressive coefficients (ϕ_1, \ldots, ϕ_p) and moving average coefficients $(\theta_1, \ldots, \theta_q)$? Derive a formula for the spectral density function f_X of (X_t) .
- (iv). Show that the spectral density of a AR(1) process with autoregressive coefficient $\phi \in (-1, 1)$ is

$$f(\omega) = \frac{\sigma^2}{\pi(1-\phi^2)} \sum_{k=-\infty}^{\infty} \phi^{|k|} z^k$$

where $z = e^{i\omega}$ and σ^2 is the variance of the driving white noise process.

(v). Hence, or otherwise, compute the autocovariance function of a ARMA(1, 1) process having autoregressive coefficient ϕ and moving average coefficient θ .

UNIVERSITY OF

2

The MA(1) process (X_t) is generated as

$$X_t = \theta \epsilon_{t-1} + \epsilon_t$$

where $\theta \in \mathbb{R}$ and (ϵ_t) is a white noise process with variance σ^2 . What is the autocovariance function $(\gamma_k : k \in \mathbb{N})$ of (X_t) ?

The sequence is observed from time 1. Uncorrelated variables (U_t) , and scalars λ_t, ϕ_t $(t = 1, 2, \ldots)$, are determined recursively by:

$$U_1 = X_1 \tag{1}$$

$$U_t = X_t - \lambda_t U_{t-1} \quad (t = 2, 3, ...)$$
(2)

$$\phi_t = \operatorname{var}(U_t). \tag{3}$$

Let \hat{X}_t be the best linear predictor of X_t based on (X_1, \ldots, X_{t-1}) . Justify the recursive formulae:

$$\lambda_t = \gamma_1 / \phi_{t-1} \tag{4}$$

$$\phi_t = \gamma_0 - \gamma_1 \lambda_t \tag{5}$$

$$\widehat{X}_t = \lambda_t U_{t-1}$$
(6)
$$U_t = X_t - \widehat{X}_t$$
(7)

$$U_t = X_t - \dot{X}_t \tag{7}$$

with the starting conditions $\lambda_1 = 0, U_0 \equiv 0$.

You may assume that $\lambda = \lim_{t\to\infty} \lambda_t$ exists and lies in [-1,1]. Show that $\lambda = \theta$ if $|\theta| \leq 1$. What is λ when $|\theta| > 1$?

We observe $X_1 = -1.3$, $X_2 = 0.8$. Assuming $\sigma^2 = 1, \theta = -1$, find the best linear predictors of X_3 and X_4 based on these observations, and the variance of the prediction error in each case.

UNIVERSITY OF

3

Describe, without proof, how the *polar rejection* method could be applied to generate a random variable Y from the chi-squared distibution with 1 degree of freedom, $Y \sim \chi_1^2$.

[Hint: If Z has the standard normal distribution, and $Y = Z^2$, then $Y \sim \chi_1^2$.]

The variable X is said to have the *inverse Gaussian distribution* with mean $\mu > 0$ and shape parameter $\lambda > 0$, and we write $X \sim IG(\mu, \lambda)$, if its probability density function is

$$f_X(x) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left\{\frac{-\lambda(x-\mu)^2}{2\mu^2 x}\right\} \qquad (x>0).$$
(1)

Show that the following algorithm will generate a variable $X \sim IG(\mu, \lambda)$:

(i). Generate, independently, $Y \sim \chi_1^2$, and U, uniformly distributed on [0, 1]. Note: Y has density

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} \exp\left(-\frac{1}{2}y\right) \qquad (y > 0)$$

(ii). Define X_{-} , X_{+} to be, respectively, the smaller and larger roots of the quadratic equation

$$\lambda (x - \mu)^2 - Y \mu^2 x = 0.$$
 (2)

- (iii). If $U \leq \mu/(\mu + X_{-})$ set $X = X_{-}$.
- (iv). Otherwise set $X = X_+$.

[Hint: Compute $\Pr\{X \in (x, x + dx)\}$, treating the cases $x \leq \mu$ and $x > \mu$ separately. Note that $X_- \times X_+ = \mu^2$, and so $X \leq \mu$ if and only if $X = X_-$, while $\mu/(\mu + X_-) = X_+/(\mu + X_+)$.]

Using equation (2), or otherwise, show that the distribution of $\lambda (X - \mu)^2 / \mu^2 X$ is χ_1^2 .

CAMBRIDGE

 $\mathbf{4}$

Describe the *Gibbs sampler* for generating a random configuration from the joint distribution P of variables (X_1, \ldots, X_k) . Show that P is a stationary distribution of the associated Markov chain.

A statistical model for a two-dimensional image is as follows. With each pixel (i, j) $(1 \leq i, j \leq N)$ in a $N \times N$ array is associated a random variable, X_{ij} , having possible values 0 and 1. Two pixels (i, j) and (i', j') are said to be *neighbours* if *either* i = i' and |j-j'| = 1, or j = j' and |i - i'| = 1. The probability of any configuration $\boldsymbol{x} = (x_{ij} : 1 \leq i, j \leq N)$ for the collection $\boldsymbol{X} = (X_{ij} : 1 \leq i, j \leq N)$ of all these variables has the form:

$$p(\boldsymbol{x}) = \exp(\lambda + \alpha n_1 + \beta n_2) \tag{1}$$

where λ, α, β are constants, n_1 is the total number of 1's in the configuration \boldsymbol{x} , and n_2 is the total number of pairs of neighbouring pixels (i, j), (i', j') such that $x_{ij} = x_{i'j'} = 1$.

Compute the probability p_{ij} that $X_{ij} = 1$, given the values of the variables at all other pixels, as a function of the total number z_{ij} of 1's at the pixels neighbouring (i, j). Hence devise a Gibbs sampler scheme for generating a random configuration from the distribution (1).

Suppose the pixels are coloured alternately black and white, as on a chessboard, so that neighbouring pixels are of opposite colours. Let \boldsymbol{B} denote the collection of X's at black pixels, and \boldsymbol{W} the collection of X's at white pixels. Describe the Gibbs sampler for generating a draw from the distribution of $(\boldsymbol{B}, \boldsymbol{W})$.

The image we actually observe is a noisy version $\mathbf{Y} = (Y_{ij})$ of \mathbf{X} : given $\mathbf{X} = \mathbf{x}$, the Y's are independent, Y_{ij} having the normal distribution with mean x_{ij} and variance 1. How would you modify the above Gibbs schemes to sample from the posterior distribution of \mathbf{X} , given $\mathbf{Y} = \mathbf{y}$?

END OF PAPER