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SECTION A

1

(a) Write down the form of an ordinary linear model for a n× 1 response vector Y , n× p
covariate matrix X of rank p, and p × 1 parameter vector β. Derive the form of the
maximum likelihood estimator for β, and any other parameters.

(b) Define the residuals, and derive their joint distribution under the model. [Hint: You

may use the fact that if Z ∼ N(0, Σ) for some vector Z, then AZ ∼ N(0, AΣAT )
for any suitable matrix A.]

A nutritionist measures the weights and heights of n = 100 students, n1 = 45 female
and n2 = 55 male. Let the weight of student j = 1, . . . , ni of sex i = 1, 2 be Yij, and their
height be xij . The nutritionist would like to be able to predict the weight of other students,
as closely as possible, from their sex and height.

(c) Explain the meaning and purpose of using the command I(height-165) in the R

output below. Write out the model lm2 algebraically, and give the estimates and
standard errors for each regression parameter; make sure you interpret the results
qualitatively in terms of the original data.

(d) Considering all the R output, write a concise summary for the nutritionist about your
findings. For any hypothesis tests you use, state the hypotheses and null distribution.
Comment in particular on the difference between the slope parameters for height in
models lm1 and lm2.

(e) The summaries give the maximum of the residuals for each model; by comparing
this to the residual standard errors, suggest any comments you might make to the
nutritionist about the data and the models.
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> head(dat)

height sex weight

1 163 F 62

2 171 F 53

3 167 M 64

4 177 M 58

5 174 M 72

6 159 F 60

> options()$contrasts

unordered ordered

"contr.treatment" "contr.poly"

> lm1 = lm(weight ~ I(height-165), data=dat)

> lm2 = lm(weight ~ sex + I(height-165), data=dat)

> lm3 = lm(weight ~ sex*I(height-165), data=dat)

> summary(lm1)

Residuals:

Min 1Q Median 3Q Max

-12.4082 -3.3276 0.0455 3.7609 26.6071

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.8853 0.7418 80.729 < 2e-16

I(height - 165) 0.8769 0.1175 7.463 3.48e-11

Residual standard error: 5.942 on 98 degrees of freedom

Multiple R-squared: 0.3624,Adjusted R-squared: 0.3559

F-statistic: 55.7 on 1 and 98 DF, p-value: 3.477e-11

> summary(lm2)

Residuals:

Min 1Q Median 3Q Max

-12.2536 -3.4587 0.0257 3.2571 24.7151

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.4711 0.8533 68.520 < 2e-16

sexM 4.3294 1.4356 3.016 0.00327

I(height - 165) 0.6211 0.1412 4.397 2.81e-05

Residual standard error: 5.71 on 97 degrees of freedom

Multiple R-squared: 0.4171,Adjusted R-squared: 0.405

F-statistic: 34.7 on 2 and 97 DF, p-value: 4.294e-12

> summary(lm3)

Residuals:
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Min 1Q Median 3Q Max

-11.9844 -3.5162 -0.0463 3.1702 24.5908

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.4506 0.8593 68.020 < 2e-16

sexM 4.6710 1.7504 2.668 0.00895

I(height - 165) 0.6696 0.2000 3.349 0.00116

sexM:I(height - 165) -0.0977 0.2838 -0.344 0.73139

Residual standard error: 5.737 on 96 degrees of freedom

Multiple R-squared: 0.4178,Adjusted R-squared: 0.3996

F-statistic: 22.96 on 3 and 96 DF, p-value: 2.737e-11
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2

A farmer is measuring the yields of two varieties of wheat under various conditions.
He has 4 fields, each of equal size. In each of the three years 2004, 2005, 2006, he planted
each of the two varieties of wheat in two fields, and gave each either a high or low dose of
fertiliser. The data are given in the table below.

Variety Fertiliser
Year

2004 2005 2006

1
Low 5.26 6.93 5.99
High 8.08 9.15 8.36

2
Low 9.91 11.03 8.19
High 6.39 8.84 7.45

Explain what is meant by a factor, in the context of linear models. Why might we
want to treat the year as a factor when analysing the wheat yields?

Look at the edited R output below. Write down the model being fitted in lmSF.Y

algebraically, remembering to define each symbol you use, and any constraints.

In the output from the anova() command below, some of the values have been
removed and replaced with xx. Rewrite the ANOVA table, filling in the missing entries
from the columns Df and Mean Sq; explain how to calculate the missing entry in the column
labelled F value, and give a rough approximation to its value. What is the hypothesis test
being tested in the row labelled seed:fert? State the hypotheses, null distribution, and
your conclusion clearly. Based on this ANOVA table only, would you suggest a simpler
model to try to fit? Explain your answer.

Now look at the output from the summary() command. How would you interpret
the results of this model fit, and what would you tell the farmer about the yields from the
two varieties of wheat under the different conditions?

> seed

[1] 1 1 1 1 1 1 2 2 2 2 2 2

Levels: 1 2

> fert

[1] Low Low Low High High High Low Low Low High High High

Levels: Low High

> year

[1] 2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006

Levels: 2004 2005 2006

> yield

[1] 5.26 6.93 5.99 8.08 9.15 8.36 9.91 11.03 8.19 6.39

[11] 8.84 7.45

> lmSF.Y = lm(yield ~ seed*fert + year)

> anova(lmSF.Y)

Analysis of Variance Table

Part III, Paper 37 [TURN OVER



6

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

seed xx 5.3868 xx 11.3748 0.014993

fert xx 0.0768 xx 0.1622 0.701122

year xx 6.2883 xx 6.6392 0.030146

seed:fert xx 16.0083 xx xx 0.001137

Residuals xx 2.8414 xx

> summary(lmSF.Y)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.5050 0.4866 11.313 2.85e-05

seed2 3.6500 0.5619 6.496 0.000633

fertHigh 2.4700 0.5619 4.396 0.004589

year2005 1.5775 0.4866 3.242 0.017646

year2006 0.0875 0.4866 0.180 0.863216

seed2:fertHigh -4.6200 0.7946 -5.814 0.001137

---

Residual standard error: 0.6882 on 6 degrees of freedom

Multiple R-squared: 0.9071,Adjusted R-squared: 0.8298

F-statistic: 11.72 on 5 and 6 DF, p-value: 0.004715
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Adult beetles of the genus Tribolium eat the eggs of their own species as well as those
of closely related species. An experiment was conducted on adult beetles of three species,
denoted by A, B, and C, to determine if any of these species has evolved a preference for
eggs of the other species, that is, if any of the three species can recognise and avoid eggs
of its own species - clearly an evolutionary advantage!

The experiment was conducted on three different days with a number of repetitions.
A number of adult beetles of each species was isolated, and presented with a vial of 150
eggs, 50 of each type. Two days later, the number of eggs remaining of each type was
recorded. The data are presented in the table below.

Adult species
A B C

Eggs Total Eggs Total Eggs Total

Day 1
61 86 53 88 44 66
60 84 36 64 45 61
44 68 46 84 51 70

Day 2
54 75 73 115 52 79
68 90 62 100 38 61
65 88 - - 30 53

Day 3
77 101 73 117 - -
78 108 63 102 - -
63 99 80 125 - -

The column Eggs gives the number of eggs of the other species that were eaten over
the 2 day period, and the column Total gives the total number of eggs eaten. So for species
A, Eggs gives the number of eggs of species B and C that were eaten. The data show that
only 2 experiments were conducted for species B in Day 2, and none for species C in day
3. The R output below contains an analysis of these data.

(a) Write down the algebraic form of the model fitted in eggs.glm1, defining your
notation carefully and giving any constraints explicitly.

(b) In the analysis of deviance table, six entries have been replaced by xx. Find these
values.

(c) Using deviances, test whether the probability of eating eggs of the other species
depends on the day in which the experiment started, controlling for Species. Give
the null hypothesis, the test statistic, its null distribution, the result, and your
conclusion in words.

(d) Using your preferred model, obtain an estimate of the log-odds of eating eggs of the
other species for an adult beetle of Species A. Explain how to obtain an approximate
95% confidence interval for this log-odds, stating any asymptotic distribution results
used.

(e) The confidence interval in (d) equals (0.7586, 1.065). What do you conclude about
the eating preferences of adult beetles of Species A?
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> eggs <- c(61,60,44,54,68,65,77,78,63,53,36,46,73,62,73,63,80,44,45,51,

+ 52,38,30)

> total <- c(86,84,68,75,90,88,101,108,99,88,64,84,115,100,

+ 117,102,125,66,61,70,79,61,53)

> prop <- eggs / total

> Species <- as.factor(c(rep("A",times=9),rep("B",times=8),rep("C",times=6)))

> Day <- as.factor(c(rep(1,3), rep(2,3), rep(3,3), rep(1,3), rep(2,2),

+ rep(3,3), rep(1,3), rep(2,3)))

> eggs.glm1 <- glm(prop ~ Day + Species, family=binomial, weights=total)

> summary(eggs.glm1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.87083 0.10612 8.206 2.28e-16

Day2 0.04578 0.11641 0.393 0.694

Day3 0.06941 0.12270 0.566 0.572

SpeciesB -0.46029 0.10701 -4.301 1.70e-05

SpeciesC -0.20026 0.13919 -1.439 0.150

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 33.631 on 22 degrees of freedom

Residual deviance: 14.646 on 18 degrees of freedom

> anova(eggs.glm1, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: prop

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL xx xx

Day xx xx 20 33.358 0.8723

Species 2 xx 18 xx 8.647e-05

> eggs.glm2 <- glm(prop ~ Species, family=binomial, weights=total)

> summary(eggs.glm2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.91191 0.07824 11.656 < 2e-16

SpeciesB -0.45905 0.10684 -4.297 1.73e-05

SpeciesC -0.21877 0.13289 -1.646 0.0997

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 33.631 on 22 degrees of freedom

Residual deviance: 14.987 on 20 degrees of freedom
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Suppose that we have independent Poisson observations Y1, . . . , Yn with

P(Yi = y) =
e−µiµy

i

y!
, y = 0, 1, . . . ,

and the means µi are positive. Assume that we fit the following model

log µi = xTi β =

p
∑

j=1

xijβj ,

where β is a p-dimensional vector of unknown parameters, and xi is a p-dimensional vector
of known covariates for observation i. Let xTi denote the transpose of xi.

(a) Write down the log-likelihood for this model and derive a set of equations that must
be satisfied by β̂, the maximum likelihood estimator of β.

(b) Derive an expression for the deviance of this model. How and when can the deviance
be used to test for goodness of fit?

(c) The following data set contains information on 22 rats that received a single dose
of the carginogen azoxymethane (AOM), a chemical that induces colon cancer. The
rats were sacrificed at three different times, 6, 12 and 18 weeks after injection, and
their colons were removed and analysed. The count of aberrant crypt foci observed
in the colon of each rat is recorded, where these crypts are distinctly different in
size and shape, as well as thickness of lining, from crypts of healthy animals. It
is believed that these aberrant crypt foci represent precursor lesions of chemically
induced colon cancer. Let count denote the number of aberrant crypt foci, and
endtime denote the time, following injection, when the rat was sacrificed. The R

output below contains an analysis of these data.

> count <- c(1,3,5,1,2,1,1,3,1,2,6,0,0,4,1,10,6,6,7,5,7,6)

> endtime <- c(6,6,6,6,6,6,6,12,12,12,12,12,12,12,12,18,18,18,18,18,

+ 18,18)

> aom.glm1 <- glm(count ~ endtime, family=poisson)

> aom.glm2 <- glm(count ~ endtime + I(endtime^2), family=poisson)

> anova(aom.glm1, aom.glm2, test="Chisq")

Model 1: count ~ endtime

Model 2: count ~ endtime + I(endtime^2)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 20 28.369

2 19 24.515 1 3.8548 0.0496

What assumptions are made to justify fitting a Poisson model to this data? Write
down the algebraic form of the model fitted in aom.glm2. What test of hypothesis
is performed by the anova command above? Give the null hypothesis, the test
statistic, its null distribution, the result, and your conclusion in words. Does it
make sense to test for the goodness of fit of model aom.glm2?

Explain what is meant by the term over-dispersion. Give one plausible reason why
this data might display over-dispersion. We proceed to estimate the dispersion
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parameter by the following formula.

φ̂ =

n
∑

i=1

(Yi − µ̂i)
2

µ̂i

/

(n− p),

where Yi = counti is the response.

> phi <- sum((count-acf.glm2$fitted.values)^2/acf.glm2$fitted.values)/19

> phi

[1] 1.254068

How would you modify the test of hypothesis above to take account of over-
dispersion? Give the test statistic and its null distribution.
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SECTION B

5

(a) In survival data analysis, what is

(i) right censoring?

(ii) the relationship between the censoring distribution and the survival time distribu-
tion if right censoring is assumed to be non-informative?

(iii) implied, at each time point, for those subjects who are censored and those who are
still under observation when right censoring is assumed non-informative in a study?

(b) Let T be a positive discrete survival time random variable which takes unique ordered
failure time points t1, t2, . . . , tn (i.e. 0 = t0 < t1 < . . . < tn). In a study of time to failure
of m subjects, interest lies in estimating the survivor function, S(t) = P(T > t), of T .
Denote by dj the number of subjects that are observed to fail at tj and nj the number of
subjects who were still at risk immediately prior to tj. Define f(tj) and h(tj) to be the
probability mass function and discrete hazard function of failing at tj respectively. The
latter corresponds to the conditional probability of failing at tj, given still alive beyond the
previous failure time point tj−1. Assume that censoring in this study is non-informative.

Derive an expression for the survivor function at time t in terms of only the discrete hazard
function. From this, write down the “Kaplan-Meier” estimator of the survivor function.

(c) In a recently completed randomised controlled clinical trial investigating the effect of
chemotherapy versus radiotherapy on time to death after surgical removal of a localised
cancerous lung tumour in elderly patients, both the time to death from lung cancer and the
time to death from other causes since surgery are of interest. In particular, the estimated
probabilities of dying from lung cancer and dying from other causes within 5 years of
surgery, and the estimated effect of treatment on survival are required. The data collected
are in the form (Ti,Di), where Ti represents either the time to death, if observed, or
the time until the end of study if death has been unobserved for the ith patient, and is
recorded in the variable time within the data-set, cancer.dat. Di takes the value 0, 1
or 2 depending on whether death is unobserved (status= 0), death is observed to be due
to lung cancer (status= 1) or death is observed to be from other causes (status= 2) for
the ith patient.

Dr PH Cox, the study statistician, is responsible for analysing the data. Initially, Dr Cox
decides to describe the data, ignoring treatment group status, by producing two overall
“Kaplan-Meier”-type survival curves. The first curve is for time to death from lung cancer,
where deaths from other causes are treated as censored data. The second is for the time to
death from other causes where now deaths from lung cancer are treated as censored data.
The data from subjects who have not died by the end of the study are treated as censored
in both situations. Afterwards Dr Cox analyses time to death from lung cancer and
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time to death from other causes by fitting two separate proportional hazards models with
type of treatment (i.e. chemotherapy versus radiotherapy, where trt= 0 corresponds to
radiotherapy and trt= 1 corresponds to chemotherapy) as the only included explanatory
variable.

The plots produced by Dr Cox using R are shown in the accompanying Figure. The
corresponding “Kaplan-Meier” tables are provided also. For ease of presentation, the
information in the figure for the estimated survival curve for death from other causes is
displayed in the form of a cumulative distribution function (i.e. one minus the survivor
function), while the information in the estimated survivor function for death from lung
cancer is displayed in the standard way as a survival curve. The R code and edited R
output of results from the proportional hazards models fitted by Dr Cox also are displayed.

(i) From the provided plots, the details of which are presented in the “Kaplan-Meier”
tables, give the estimated overall probabilities of dying from lung cancer and dying
from other causes within 5 years of surgery. Are these unbiased estimates for
P(T 6 5,D = 1) and P(T 6 5,D = 2)? Give reasons to justify your answer.

(ii) Give the multi-state diagram representation for the analysis performed by Dr Cox.
The transition intensity functions should be included in the diagram, with their
mathematical equations describing the estimated relationships between rates of
transition between the various states and treatment given. All notation used must
be defined.

(iii) Interpret for the study investigators (who may not be statisticians) the treatment
effect obtained from the fitted proportional hazards model corresponding to time to
death from lung cancer.
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> lungcancerdeath.km <- survfit(Surv(time,(status==1))~1,data=cancer.dat)

> summary(lungcancerdeath.km)

Call: survfit(formula = Surv(time, (status == 1)) ~ 1, data = cancer.dat)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1.01 76 1 0.987 0.0131 0.9616 1.000

1.22 75 1 0.974 0.0184 0.9384 1.000

1.47 72 1 0.960 0.0225 0.9170 1.000

2.00 68 1 0.946 0.0263 0.8959 0.999

2.05 66 1 0.932 0.0295 0.8756 0.991

2.12 65 1 0.917 0.0324 0.8561 0.983

2.23 61 1 0.902 0.0351 0.8360 0.974

2.24 60 1 0.887 0.0376 0.8165 0.964

2.29 57 1 0.872 0.0401 0.7966 0.954

2.47 52 1 0.855 0.0427 0.7753 0.943

2.57 48 1 0.837 0.0453 0.7528 0.931

3.14 39 1 0.816 0.0490 0.7251 0.918

3.14 38 1 0.794 0.0522 0.6982 0.903

3.37 35 1 0.772 0.0554 0.6702 0.888

3.37 34 1 0.749 0.0583 0.6429 0.872

3.43 32 1 0.725 0.0610 0.6153 0.855

3.53 30 1 0.701 0.0635 0.5872 0.838

3.54 28 1 0.676 0.0660 0.5584 0.819

3.58 26 1 0.650 0.0684 0.5290 0.799

4.02 22 1 0.621 0.0714 0.4954 0.778

4.11 19 1 0.588 0.0747 0.4583 0.754

4.37 15 1 0.549 0.0794 0.4133 0.729

4.37 14 1 0.510 0.0828 0.3706 0.701

4.59 13 1 0.470 0.0852 0.3298 0.671

4.62 12 1 0.431 0.0867 0.2908 0.639

4.85 11 1 0.392 0.0872 0.2535 0.606

5.07 9 1 0.348 0.0877 0.2127 0.571

5.23 7 1 0.299 0.0882 0.1674 0.533

5.61 6 1 0.249 0.0864 0.1260 0.491

6.63 3 1 0.166 0.0889 0.0580 0.474

7.05 2 1 0.083 0.0736 0.0146 0.472
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> otherdeath.km <- survfit(Surv(time,(status==2))~1,data=cancer.dat)

> summary(otherdeath.km)

Call: survfit(formula = Surv(time, (status == 2)) ~ 1, data = cancer.dat)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

0.244 80 1 0.988 0.0124 0.963 1.000

0.303 79 1 0.975 0.0175 0.941 1.000

0.745 78 1 0.963 0.0212 0.922 1.000

0.845 77 1 0.950 0.0244 0.903 0.999

1.259 74 1 0.937 0.0272 0.885 0.992

1.292 73 1 0.924 0.0297 0.868 0.984

1.638 71 1 0.911 0.0320 0.851 0.976

1.645 70 1 0.898 0.0341 0.834 0.968

1.871 69 1 0.885 0.0360 0.817 0.959

2.041 67 1 0.872 0.0378 0.801 0.949

2.148 63 1 0.858 0.0397 0.784 0.940

2.285 58 1 0.843 0.0417 0.766 0.929

2.322 56 1 0.828 0.0435 0.747 0.918

2.328 55 1 0.813 0.0453 0.729 0.907

2.403 53 1 0.798 0.0470 0.711 0.896

2.490 51 1 0.782 0.0486 0.693 0.884

2.518 50 1 0.767 0.0501 0.675 0.871

2.601 47 1 0.750 0.0516 0.656 0.859

2.604 46 1 0.734 0.0530 0.637 0.846

2.672 45 1 0.718 0.0543 0.619 0.832

2.818 44 1 0.701 0.0554 0.601 0.819

2.838 43 1 0.685 0.0565 0.583 0.805

3.041 41 1 0.668 0.0575 0.565 0.791

3.119 40 1 0.652 0.0585 0.547 0.777

3.146 37 1 0.634 0.0595 0.528 0.762

3.313 36 1 0.616 0.0604 0.509 0.747

3.405 33 1 0.598 0.0614 0.489 0.731

3.611 25 1 0.574 0.0634 0.462 0.713

3.760 24 1 0.550 0.0651 0.436 0.694

4.074 21 1 0.524 0.0671 0.408 0.673

4.096 20 1 0.498 0.0686 0.380 0.652

5.065 10 1 0.448 0.0777 0.319 0.629

5.134 8 1 0.392 0.0858 0.255 0.602

5.725 5 1 0.313 0.0981 0.170 0.579
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> lungcancerdth.cox <- coxph(Surv(time,(status==1))~trt,data=cancer.dat)

> summary(lungcancerdth.cox)

Call:

coxph(formula = Surv(time, (status == 1)) ~ trt, data = cancer.dat)

n= 80, number of events= 31

coef exp(coef) se(coef) z Pr(>|z|)

trt 1.3113 3.7111 0.4346 3.018 0.00255 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

exp(coef) exp(-coef) lower .95 upper .95

trt 3.711 0.2695 1.583 8.697

> otherdeath.cox <- coxph(Surv(time,(status==2))~trt,data=cancer.dat)

> summary(otherdeath.cox)

Call:

coxph(formula = Surv(time, (status == 2)) ~ trt, data = cancer.dat)

n= 80, number of events= 34

coef exp(coef) se(coef) z Pr(>|z|)

trt 0.5903 1.8045 0.3640 1.621 0.105

exp(coef) exp(-coef) lower .95 upper .95

trt 1.805 0.5542 0.8841 3.683
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6

A behavioural researcher approaches two statisticians (Dr Quasi and Dr Pascal) with
data collected from a one academic year follow-up study of m Part IIB and Part III
Mathematical Tripos students. The researcher has collected data on the number of times
each student in the study has been to any Night Club in Cambridge during each of the
three terms (Michaelmas, Lent and Easter), and is interested in modelling these count
profiles over time and determining what variables can affect the number of visits in a
term.

The researcher has brought the Night Club data to the two statisticians in the form of
a vector of counts Yi = (Yi1, Yi2, Yi3)

T for the ith subject chronologically ordered over
the three terms in the academic year. Additional information on the student is recorded
in a baseline covariate vector xi, which includes details on the distance of the student’s
college to the nearest Night Club, whether the student is reading for Part IIB or Part III
of the Mathematical Tripos and the gender of the student. Furthermore, the term effect is
represented by the factor variable, αj (j = 1, 2, 3 with 1, 2, 3 corresponding to Michaelmas,
Lent, Easter respectively). The researcher believes that there may be some students who
over their entire time at the University will never be inclined towards attending a Night
Club during term time.

Both Drs Quasi and Pascal recognise that there will be correlation between the components
of Yi. Moreover they realise that they need to incorporate into their models the
researcher’s belief that there is a proportion of students who will never be inclined towards
attending a Night Club during term time.

Dr Quasi decides to model the data as follows. He assumes that

logE(Yij |xi, αj , β0, β
T , π) = log(µij(1− π)) = β0 + βTxi + αj + log(1− π)

V ar(Yij |xi, αj , β0, β
T , π) = (1− π)µij(1 + (π + τ)µij)

Cov(Yij , Yik|xi, αj , αk, β0, β
T , π) = µijµikτ (j 6= k),

where π ∈ [0, 1] and τ > 0 are parameters that accommodate the possibility a student
will never be inclined to attend a Night Club during term time and potential unexplained
heterogeneity respectively.

However, Dr Pascal decides to adopt the following alternative strategy. She assumes that
conditional on a random effect bi, the counts {Yij : j = 1, 2, 3} on the ith student are
independent Poisson random variables with

E(Yij|bi;xi, αj , β0, β
T ) = ηij = bi exp(β0 + βTxi + αj)

V ar(Yij|bi;xi, αj , β0, β
T ) = ηij

Cov(Yij, Yik|bi;xi, αj , αk, β0, β
T ) = 0 (j 6= k).

She assumes that the bi’s are independently and identically distributed random variables
and that bi is from a mixture distribution with probability density function

fbi(u) =

{

π if u = 0

(1− π) (1/τ)
1/τ

Γ(1/τ) u(1/τ)−1 exp(−u/τ) if u > 0
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That is, bi is from a mixture distribution with a point mass at zero and for values greater
than zero, a Gamma(1/τ, 1/τ) distribution with mean and variance 1 and τ respectively.
The mixing probabilities are π and 1− π respectively.

(a) What are the differences between the two approaches?

(b) What estimating approaches would Drs Quasi and Pascal base their inferences upon?

(c) How would Drs Quasi and Pascal correctly interpret their respective {αj} parameters
for the behavioural researcher? They have both assumed that α1 = 0 in their models
to avoid non-identifiability.

(d) Work out the unconditional distribution for Yij and the first two moments of Yi

from Dr Pascal’s model. If Dr Pascal’s model was the “correct” model for analysing
these Night Club data, would Dr Quasi be consistently estimating what he thinks

he is estimating? Why?

(e) Dr Pascal has fitted her model above to the data collected and obtained a log-
likelihood value of −1201.56. She then refitted her model further assuming π = 0,
and obtained a log-likelihood value of −1202.92. Test the null hypothesis, H0 :
π = 0, against the alternative, H1 : π > 0, showing all your calculations. Use a
5%-significance level for your hypothesis test.

You may find the following useful.

If X is from a Gamma(a, b) distribution, then the probability density function of X is
given by

fX(x) =

{

ba

Γ(a)x
a−1 exp(−bx) if x > 0

0 otherwise

For random variables X1,X2,X3 with E(X2
i ) < ∞ (i = 1, 2, 3), we have

Cov(X1,X2) = E[Cov(X1,X2|X3)] + Cov[E(X1|X3),E(X2|X3)]

The 90th and 95th percentiles for a Chi-squared distribution with 1, 2 and 3 degrees of
freedom are given by

χ2
0.90(1) = 2.71 and χ2

0.95(1) = 3.84

χ2
0.90(2) = 4.61 and χ2

0.95(2) = 5.99

χ2
0.90(3) = 6.25 and χ2

0.95(3) = 7.81

END OF PAPER
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