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Let P be a statistical model, that is a collection of probability measures on a given
space X equipped with a σ-algebra A. All measures are supposed to be dominated by a
common σ-finite measure µ. That is, for any P in P, one can write dP = pdµ, with p
the density of the probability measure P with respect to µ. Let now P be a fixed element
of P, and denote by L2(P ) be the space of real-valued functions on X that are square
integrable with respect to P .

(a) Give the definition of a differentiable path at P through the model, with score
function g : X → R at P .

(b) Prove that any score function g at P is centered, that is
∫

gdP = 0 (you may use
without proof that g belongs to L2(P ) and that for any densities p, q with respect
to µ, one has

∫

(
√
p−√

q)(
√
p+

√
q)dµ = 0).

Consider a semiparametric model P = {Pθ,η , θ ∈ Θ, η ∈ H}, where Θ is an open
subset of R and H is a set of functions. For any a, t in R and ηt in H, suppose that there
exist differentiable paths t → Pθ+ta,ηt through the model at Pθ,η such that the scores can

be written additively as a
•

ℓθ,η + g, where
•

ℓθ,η and g are in L2(Pθ,η).

(c) Define the efficient score ℓ̃θ,η and the efficient information Ĩθ,η.

(d) Prove that any efficient score function ℓ̃θ,η is centered and that Pθ,η(
•

ℓθ,η ℓ̃θ,η) = Ĩθ,η.
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Consider the statistical model P of the probability measures Pf having probability
density f with respect to Lebesgue measure on the interval [0, 1].

(a) Give the definition of a tangent set at Pf .

(b) Show that a tangent set
•

Pf at Pf consists of the set of all measurable and bounded

functions g on [0, 1] such that
∫ 1
0 g(u)f(u)du = 0.

Let a be a bounded measurable function on [0, 1]. For any f , define the functional
ψ(Pf ) =

∫ 1
0 a(u)f(u)du.

(c) Prove that this functional is differentiable at Pf relative to
•

Pf .

(d) Define the efficient influence function for estimating a functional ψ : P → R.
Determine the efficient influence function for the functional ψ(Pf ) defined above.

[You may use without proof that the closure in L2(Pf ) of
•

Pf consists of all g in

L2[0, 1] such that
∫ 1
0 g(u)f(u)du = 0.]

(e) Suppose now that the density f is bounded and consider the functional ψ(Pf ) =
∫ 1
0 f(u)

4du. Determine the efficient influence function for this new functional.
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Consider a model P = {Pη , η ∈ F} of probability measures Pη on a measurable
space (X ,A) indexed by a class of functions F defined on X , dominated by a common
σ-finite measure µ and let dPη = pηdµ. Let ψ : P → R be a functional of interest and let
η̂ be any estimator of η based on a single observation X from the model.

(a) Let f, g be in F and let d be some metric on F . Prove that

inf
η̂

sup
η∈F

Pη
[

d(η̂(X), η)2
]

>
1

4
d(f, g)2

∫

(pf ∧ pg)dµ.

Let now P
(n)
η = ⊗n

i=1Pη denote the joint law of i.i.d. random variables X1, . . . ,Xn

drawn from Pη and let ψ̂n be any estimator of ψ(Pη) based on observations X1, . . . Xn.

Let µ(n) = ⊗n
i=1µ. Define, for any f, g in F , ‖P (n)

f − P
(n)
g ‖1 =

∫

Xn |p(n)f − p
(n)
g |dµ(n).

(b) Let f, g be in F , with ψ(Pf ) = θ and ψ(Pg) = τ , for some reals θ, τ . Prove that for
any such f, g,

inf
ψ̂n

sup
η∈F

P (n)
η [(ψ̂n − ψ(Pη))

2] >
1

4
(θ − τ)2

(

1− 1

2
‖P (n)

f − P (n)
g ‖1

)

.

(c) Consider the functional ψ(f) =
∫ 1
0 uf(u)du. Let F be the set of all continuous

densities on [0, 1]. By an appropriate choice of alternatives f and g, prove that
there exists a constant finite constant C > 0 such that

inf
ψ̂n

sup
η∈F

P (n)
η [(ψ̂n − ψ(η))2] > C/n.

[Hints: Take f = 1 and g = 1 + an(x − 1/2), for an → 0 to be chosen. You may

further use without proof that if Pg has density 1 + ∆ with respect to Pf , then

‖P (n)
f − P (n)

g ‖21 6
(

1 +

∫

∆2dPf

)n

− 1.]

Part III, Paper 36



5

4

Suppose that one observes (X,Y ) ∈ R×R with

Y = gθ(X) + ε,

where gθ is a given set of functions from R to R depending smoothly on a parameter θ ∈ R

(you may assume any differentiability or moment condition on θ → gθ(x) suitable for your
needs when computing scores). Assume that the variables X and ε are independent, that
X has an unknown probability density η, and that the law of ε is Gaussian N (0, σ2), with
σ2 > 0 known.

(a) Define and find the expression of the parametric score
•

ℓθ,η in terms of the derivative
•
gθ of the map θ → gθ. [It is not required to establish that the model is differentiable
in quadratic mean (DQM).]

(b) Propose a non-parametric tangent set
•

P
N

θ,η (again, establishing the DQM property
is not required). Compute the efficient score and the efficient information. Is there
a loss of information with respect to the parametric case when η is known ?

Now assume the pair (X, ε) has a joint probability density of the general form
η(x, e) = v(x)f(e), where v, f are unknown, with f sufficiently smooth so that derivatives
and moments are well-defined. Suppose ε is square-integrable and satisfies

∫

ef(e)de = 0,
so ε is of zero mean. Let Pθ,η denote the law of (X,Y ) for some fixed (θ, η). Let L2(Pθ,η)
denote the set of all square-integrable functions with respect to Pθ,η.

(c) Find the parametric score. Consider paths through the model of the form t→ Pθ,ηt
with ηt(x, e) = v(x)f(e)(1 + tγ(e)), with γ a bounded measurable function and
∫

γ(y − gθ(x))dPθ,η(x, y) = 0. Prove that the path has score γ [establishing the
DQM property is not required] and that γ(e) must be orthogonal in L2(Pθ,η) to the
set of all functions of the form e · ψ(x), with (x, y) → ψ(x) in L2(Pθ,η).

(d) We admit that the efficient score ℓ̃θ,η can be written as ℓ̃θ,η(x, e) = eζ(x), for some
square-integrable function ζ. Deduce that

ℓ̃θ,η(x, e) = −e
∫

ef ′(e)de
∫

e2f(e)de

•
gθ(x).
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