MATHEMATICAL TRIPOS Part III

Friday, 1 June, 2012 1:30 pm to 3:30 pm

PAPER 35

TOPICS ON CONFORMAL INVARIANCE AND RANDOMNESS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Throughout this question, $(K_t, t \ge 0)$ will denote a chordal SLE_{κ} from the origin to infinity in the complex upper half-plane **H**. The goal will be to exhibit a special feature of the SLE processes for $\kappa \ge 8$.

 $\mathbf{2}$

(a) If $(W_t = \sqrt{\kappa}\beta_t, t \ge 0)$ denotes the driving function of the SLE, recall the equation describing the evolution of $g_t(z)$ for $z \in \mathbf{H}$ (where here, as in the lectures, g_t denotes the properly normalized conformal map from $\mathbf{H} \setminus K_t$ onto \mathbf{H}). Why is it possible to extend this (and the definition of the swallowing time $T(z) = \inf\{t \ge 0 : z \in \overline{K}_t\}$ of a point $z \in \mathbf{H}$, when it exists) to the case where z is real?

(b) When x is a given positive real number, we define $X_t := g_t(x) - W_t$. Show that when $\kappa > 4$, then T(x) is almost surely finite. [*Hint: you might wish to study the process* $(X_t^{(1-(4/\kappa))}).$]

In the sequel, we will assume that $\kappa > 4$. For each 0 < x < y, we define

$$F(x, y) = P(T(x) < T(y)).$$

(c) (i) When $\lambda > 0$ is given, show that $(K_{\lambda t}, t \ge 0)$ and $(\sqrt{\lambda}K_t, t \ge 0)$ have the same law; deduce from this that there exists a function f such that F(x, y) = f(y/(y - x)).

(ii) Describe the evolution of $Z_t := (g_t(y) - W_t)/(g_t(y) - g_t(x))$. Show that $f(Z_t)$ (up to some stopping time) is a martingale.

(d) (i) Describe all the positive C^2 functions h on $(1, \infty)$ such that $\lim_{z\to 1} h(z) = 0$ and for each z > 1,

$$\frac{\kappa}{2}h''(z) + 2\left(\frac{1}{z} + \frac{1}{z-1}\right)h'(z) = 0.$$

(ii) Show that these functions h are not bounded when $\kappa \ge 8$.

(iii) If h is such a function, prove that $h(Z_t)$ up to T(x) is a non-negative local martingale.

(iv) Conclude that when $\kappa \ge 8$, then almost surely, T(x) < T(y) for all x < y, while for $\kappa \in [4, 8)$, the probability that T(x) = T(y) is strictly positive.

(e) We suppose that there almost surely exists a continuous curve $(\gamma_t, t \ge 0)$ in $\overline{\mathbf{H}}$ such that for all t, the complement of K_t in \mathbf{H} is identical to the unbounded connected complement of $\mathbf{H} \setminus \gamma[0, t]$. Prove that almost surely, $\gamma(t)$ visits every point on the real line.

CAMBRIDGE

 $\mathbf{2}$

We denote by **L** the set of simple ("self-avoiding") loops in the complex plane, where we identify any two such loops that can be obtained from each other via monotone reparametrization. Equivalently, we view a loop γ as a compact subset of the complex plane.

We endow this set of loops with the σ -field of events \mathcal{F} that is generated by the set of loops of the type

 $E_x := \{ \gamma \in \mathbf{L} : x \text{ is in the bounded connected component of } \mathbf{C} \setminus \gamma \}.$

For each simply connected domain U, we denote by \mathbf{L}_U the set of self-avoiding loops that stay in U. We will assume that $\mathbf{L}_U \in \mathcal{F}$, and we will also assume that \mathcal{F} is generated by the family of all such sets \mathbf{L}_U .

When μ is a measure on **L**, we denote by μ_U the restriction of μ to the set of loops \mathbf{L}_U .

(a) We say that a σ -finite measure μ on **L** satisfies the property CR if for any simply connected domain U_1 and any conformal transformation Φ from U_1 onto $U_2 = \Phi(U_1)$, the image measure of μ_{U_1} under Φ is exactly μ_{U_2} . In other words, for all $A \in \mathcal{F}$,

$$\mu(\{\gamma \in \mathbf{L}_{U_1} : \Phi(\gamma) \in A\}) = \mu(\mathbf{L}_{U_2} \cap A).$$

Argue very briefly and informally why the outer boundary of the scaling limits of critical percolation clusters could be used to define a non-trivial measure μ that satisfies the property CR.

In the sequel, we are going to assume that there indeed exists such a measure μ .

(b) We shall now assume that ν is a (σ -finite) measure supported on the set E_0 of self-avoiding loops **that surround the origin**, such that for any simply connected domain U_1 that contains the origin and any conformal transformation Φ from U_1 onto $U_2 = \Phi(U_1)$ with $\Phi(0) = 0$, the image measure of ν_{U_1} under Φ is exactly ν_{U_2} . In other words, for all $A \in \mathcal{F}$,

$$\nu(\{\gamma \in \mathbf{L}_{U_1} : \Phi(\gamma) \in A\}) = \nu(\mathbf{L}_{U_2} \cap A).$$

For each simply connected subset U of the unit disc **U** that contains the origin, we denote by Φ_U the conformal map from the unit disc onto U with $\Phi_U(0) = 0$ and such that $\Phi'_U(0)$ is a positive real. We then define

$$A^{\nu}(\Phi_U) = \nu(\mathbf{L}_{\mathbf{U}} \setminus \mathbf{L}_U).$$

(i) Justify briefly the fact that the knowledge of all $A^{\nu}(\Phi_U)$ is sufficient to recover the measure $\nu_{\mathbf{U}}$.

(ii) Prove that $A^{\nu}(\Phi_{U_1} \circ \Phi_{U_2}) = A^{\nu}(\Phi_{U_1}) + A^{\nu}(\Phi_{U_2})$ for any pair (U_1, U_2) of simply connected subsets of the unit disc that contains the origin.

Part III, Paper 35

[TURN OVER

4

In the sequel, we are going to assume that:

- The previous results imply that A^{ν} is necessarily of the type $A^{\nu}(\Phi_U) = -\lambda \log(\Phi'_U(0))$ for some $\lambda \ge 0$.
- There exists a measure ρ on planar Brownian loops B starting and ending at the origin, and that stay in the unit disc, such that for any simply connected subset U of the unit disc that contains the origin

$$\rho(\{B : B \not\subset U\}) := -\log \Phi'_U(0)$$

(this measure has been described in the lectures, there is no need to recall its definition here).

• For ρ -almost all loop B, the outer boundary of B is a self-avoiding loop.

(iii) Is it possible to relate directly $\nu_{\mathbf{U}}$ to ρ ? How (no need to work out the value of the multiplicative constants)?

(c) (i) Relate the measure $\mu_{\mathbf{U}}$ to ρ (no need to work out the value of the multiplicative constants).

(ii) Let *E* be a measurable set of self-avoiding loops that surround both 0 and 1/4, and that stay in U/2. Let us denote by $\gamma(B)$ (respectively $\gamma(B+1/4)$) the outer boundary of *B* (resp. of B + 1/4). Using the translation-invariance of μ , prove that

$$\rho(\{B : \gamma(B) \in E\}) = \rho(\{B : \gamma(B+1/4) \in E\}).$$

3

(a) Describe how to rigorously define the law of a complex-valued Brownian motion B starting at the origin, that is "conditioned" to hit the unit circle at 1.

(b) We define B to be the previously described conditioned Brownian motion, and we let τ be its hitting time of 1. When U is a simply connected subset of the unit disc **U** that contains the origin and such that $d(\mathbf{U} \setminus U, 1) > 0$, we define the conformal map Φ_U from U onto **U** that maps 0 onto itself and the boundary point 1 onto 1.

Express the quantity $P(B[0,\tau) \subset U)$ in terms of Φ_U (provide a proper proof!).

(c) Outline how it is possible to relate some properties of B to a particular radial SLE process.

CAMBRIDGE

 $\mathbf{4}$

Write an essay on how it is possible to couple a Gaussian Free Field in the upper half-plane (with Dirichlet boundary conditions) with a chordal SLE_4 process from 0 to infinity in the upper half-plane.

A possible outline of the Essay can be:

- The definition of the Gaussian Free Field and of SLE₄.
- The statement of the coupling result.
- An outline of its proof.

END OF PAPER