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For this question, assume that S and T are two finite stopping times with S 6 T
and that M is an L2-bounded martingale with quadratic variation process [M ].

(a) What is a previsible process? Show, from first principles, that (ω, t) 7→ 1(S(ω),T (ω)](t)
is a previsible process.

(b) Let H be a simple process. Define the stochastic integral H ·M and prove that

E[(H ·M)2∞] = E[(H2 · [M ])∞]

[You may assume that the Lebesgue-Stieltjes integral on the right hand side is well-
defined and that H ·M and M2 − [M ] are martingales.]

(c) Compute (1(S,T ] ·M)t.

(d) Let H be a continuous, bounded and adapted process. If M
(T )
s = Ms+T −MT , s > 0

then for any t > 0,
∫ t+T

T

HsdMs =

∫ t

0
HT+sdM

(T )
s .

In particular, you have to justify why the right hand side makes sense as a stochastic
integral.

Part III, Paper 34



3

2

Consider a filtered probability space (Ω,F , (Ft)t>0,P).

(a) Show that a continuous local martingale of finite variation starting from 0 must
necessarily be identically 0, almost surely.

(b) LetX be a continuous semimartingale. Say what is meant by the quadratic variation
process [X] of X.

Suppose that Q is another probability measure on (Ω,F), absolutely continuous with
respect to P and that X is also a semimartingale under measure Q. Show that the
quadratic variation of X under Q is indistinguishable (w.r.t. Q) from the quadratic
variation of X under P. You may use without proof any standard characterization
of quadratic variation.

(c) Let X be continuous process and let A be a continuous, increasing process with
X0 = A0 = 0, almost surely. Suppose that for every θ ∈ R, the process defined by

Z
(θ)
t = exp

(

θXt −
1

2
θ2At

)

, t > 0

is a local martingale. Argue that X and A are both adapted w.r.t. the filtration
(Ft)t>0. Prove that X is a local martingale and show that [X]t = At, almost surely.

3

Let B = (B1, B2) be a Brownian motion in R2 with B0 = (1, 0). For r ∈ (0, 1) and
R ∈ (1,∞), set

Sr = inf{t > 0 : |Bt| = r}, TR = inf{t > 0 : |Bt| = R}.

(a) Use Itô’s formula to show that log |BSr∧t| is a local martingale for any r ∈ (0, 1).
[Here |Bt|

2 = ((B1
t )

2 + (B2
t )

2).]

(b) Hence show that E[log |BSr∧TR
|] = 0 for any r ∈ (0, 1) and any R ∈ (1,∞). Carefully

state any standard results that you use.

(c) Set rk = 1
kk
. Deduce from (b) that limk→∞ P[Srk 6 Tk] = 0. Conclude that almost

surely, |Bt| > 0 for all t > 0.

(d) Set Mt = log |Bt|, which, by part (c), is well-defined. Show that M is a local
martingale, but M is not a martingale.
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(a) Let M be a continuous local martingale with M0 = 0. What is the exponential local
martingale of E(M)? If [M ]∞ 6 C almost surely for some constant C, show that
E(M) is uniformly integrable.

(b) State Girsanov’s theorem.

(c) Let (Ω,F , (Ft)t>0,P) be a filtered probability space and let B be a one-dimensional
Brownian motion under P. Let µ, ν be continuous bounded adapted processes and
let σ be another continuous adapted process such that σt > δ for all t > 0 for some
δ > 0. Define

Xt =

∫ t

0
µsds+

∫ t

0
σsdBs, t > 0.

Fix T > 0. Using Girsanov’s theorem, or otherwise, find a probability measure Q

on (Ω,F) such that

Xt =

∫ t

0
νsds+

∫ t

0
σsdB̃s, t 6 T,

where B̃ is a Brownian motion under Q.
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Let (Ω,F , (Ft)t>0,P) be a filtered probability space and let B be a one-dimensional
(Ft)t>0 - Brownian motion defined on this probability space. Let σ, b1, b2 : R → R satisfy

|σ(x)− σ(y)| 6 K|x− y|, |bi(x)− bi(y)| 6 L|x− y|, i = 1, 2 for some K,L.

Let X and Y be pathwise unique solutions of the following two SDEs:

Xt = x0 +

∫ t

0
σ(Xs)dBs +

∫ t

0
b1(Xs)ds

Yt = y0 +

∫ t

0
σ(Ys)dBs +

∫ t

0
b2(Ys)ds.

Assume that b1(x) 6 b2(x) for all x ∈ R and x0 < y0.

(a) Define Zt = Yt −Xt, z0 = y0 − x0 and τ = inf{t > 0 : Zt 6 0}. Fix ǫ > 0 and take
f(x) = 1

x+ǫ
. Using Itô’s formula, find the semimartingale decomposition of f(Zt∧τ )

and show that

E[f(Zt∧τ )] 6 f(z0) + (L+K2)

∫ t

0
E[f(Zs∧τ )]ds.

(b) Using part (a), show that

E[f(Zt∧τ )] 6 f(z0)e
(L+K2)t,

and hence conclude that P[Xt 6 Yt for all t > 0] = 1.
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(a) LetX be a continuous adapted process defined on a probability space (Ω,F , (Ft)t>0,P)
with values in Rd, and let a : Rd → Rd×d, b : Rd → Rd be bounded measurable func-
tions. Explain what you mean by the statement: X solves the martingale problem
M(a, b) associated with a and b. When do we say that the martingale problem
M(a, b) is well-posed?

(b) Let X be an adapted continuous process with values in Rd. Suppose that

f(Xt)− f(X0)−

∫ t

0
Lf(Xs)ds

is a local martingale for every function f ∈ C2(Rd), where

Lf(x) =
1

2

d
∑

i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

d
∑

i=1

bi(x)
∂f(x)

∂xi
.

Prove that X is a solution to the martingale problem M(a, b).

(c) Let n > 1. Let (Zn
k )k>0 be the discrete time Markov chain on the state space

{0, 1, 2, . . . , n} whose one step dynamics is described as below: At time k, put Zn
k

red balls and n− Zn
k blue balls in an urn.

Draw a ball from the urn uniformly at random, note its colour and put the ball back
to the urn. Repeat n times.

Zn
k+1 is the number of red balls in the n draws done as above.

Assume that Zn
0 = ⌊xn⌋, where x ∈ (0, 1). Xn

t = Zn
⌊nt⌋/n. Show that

(Xn
t , t ∈ [0, 1]) → (Xt, t ∈ [0, 1]) ,

weakly, where X is the solution of the stochastic differential equation

dXt =
√

Xt(1−Xt)dBt, X0 = x,

where B is a one-dimensional Brownian motion. You may assume without proof
that the above SDE has a unique solution.

State carefully the results that you are applying.
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