MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2012 $\,$ 1:30 pm to 4:30 pm

PAPER 33

ADVANCED PROBABILITY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let (X_i) be i.i.d. random variables with $\mathbb{P}(X_1 = +1) = \mathbb{P}(X_1 = -1) = 1/2$. Define $S_0 = 0$ and for all $n \ge 1$ let $S_n = \sum_{i=1}^n X_i$.

- (a) Let $T_1 = \min\{n \ge 0 : S_n = 1\}$. Explain why T_1 is a stopping time and calculate its expectation.
- (b) Construct a martingale which converges almost everywhere but not in L^1 . [*Hint: Use the stopping time* T_1 from (a) in the construction.]
- (c) Let $T = \min\{n \ge 2 : S_n = S_{n-2} + 2\}$ and U = T 2. Are T and U stopping times? Justify your answers.
- (d) For T as defined in (c), what is $\mathbb{E}[T]$?

[You may assume any form of the Optional Stopping Theorem provided you state it clearly.]

$\mathbf{2}$

- (a) State Cramer's Theorem on the large deviations of the sample mean of a sequence of i.i.d random variables.
- (b) Let (Y_n) be a sequence of i.i.d. Exponential(1) random variables. Define $S_n = \sum_{i=1}^{n} Y_i$. Show that for all $a \ge 0$ the limit

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge na)$$

exists and determine its value.

(c) Let (U_n) be a sequence of i.i.d. random variables uniformly distributed on [0, 1]. Set $X_n = U_n^{-1/2}$ and $W_n = \sum_{k=1}^n X_k$. Show that for all $a \ge 0$ the limit

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(W_n \ge na)$$

exists and determine its value.

- (a) Give the definition of a Poisson random measure.
- (b) Let Φ and Ψ be two independent Poisson random measures of intensities μ and ν respectively. Show that $\Phi + \Psi$ is also a Poisson random measure and find its intensity.
- (c) Let (Z_i) be the arrival times of a Poisson process of intensity 1 on the interval $[0, \infty)$, so that the Poisson process N([0, t]) is the number of arrivals in [0, t]. Define $X = \sum_i Z_i^{-2}$. Let (W_i) be the arrival times of another Poisson process independent of the first one and define $Y = \sum_i W_i^{-2}$. Show that X + Y has the same law as cX for some constant c and find the value of c.
- (d) Let $\Pi = \{X_i\}$ be a Poisson random measure in \mathbb{R}^d whose intensity is the standard Lebesgue measure on \mathbb{R}^d . Write X_1, X_2, \ldots for the positions of the atoms of Π , listed in increasing order of their distance from 0. Let $f : \mathbb{R}_+ \to \mathbb{R}^d$ be a deterministic continuous function and let $(\xi_i(t))$ be independent standard Brownian motions in d dimensions. We now consider the atoms moving with Brownian motion, with trajectories of the form $(X_i + \xi_i(t))_{t \ge 0}$. We define

$$T = \inf\{t \ge 0 : f(t) \in \bigcup_i \mathcal{B}(X_i + \xi_i(t), 1)\}.$$

Show that

$$\mathbb{P}(T > t) = \exp(-\mathbb{E}[\operatorname{vol}(W(t))]),$$

where $W(t) = \bigcup_{s \leq t} \mathcal{B}(\xi(s) + f(s), 1).$

[You may assume the thinning property, but any other result needs to be proved.]

4

(a) State and prove Doob's maximal inequality.

Let (X_i) be N(-1,1) i.i.d. random variables and let $S_n = X_1 + \ldots + X_n$ and $S_0 = 0$.. Write $Z = \max_{i \ge 0} S_i$.

- (b) Show there is a unique $\lambda > 0$ so that $(e^{\lambda S_n})$ is a martingale.
- (c) Show that $\mathbb{P}(Z > t) \leq e^{-\lambda t}$.
- (d) Show that $\mathbb{E}[e^{bZ}]$ is finite for all $b < \lambda$.

3

UNIVERSITY OF

- $\mathbf{5}$
- (a) Let B be a Brownian motion in d = 2 dimensions and let $x \in \mathbb{R}^2$ such that r < |x| < R, where 0 < r < R. For all $a \ge 0$ we define

$$T_a = \inf\{t \ge 0 : |B_t| = a\}.$$

Show that

$$\mathbb{P}_x(T_r < T_R) = \frac{\log R - \log |x|}{\log R - \log r}$$

- (b) Show that planar Brownian motion does not hit points. In particular, show that planar Brownian motion never returns to its starting point. Show further that, for any open set U containing the starting point, the set of times at which planar Brownian motion visits U is unbounded.
- (c) Show that Brownian motion in 3 dimensions does not hit lines, i.e. if it is started outside a line, then a.s. it will never hit it.

6

- (a) Let (B_s) be a standard Brownian motion in one dimension. Show that $t^{\alpha}\mathbb{P}(B_s \leq 1, \forall s \leq t)$ converges to a finite positive constant as $t \to \infty$ for some α and find the value of α and the constant.
- (b) State Donsker's invariance principle.
- (c) What is the limit of $\mathbb{P}(\max_{j \leq n} S_j \geq a\sqrt{n})$ as $n \to \infty$ for a > 0, where (S_j) is a simple random walk on \mathbb{Z} . Justify your answer.

END OF PAPER