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1

State Little’s Law, giving a brief description of the three terms appearing in its
statement.

By considering the system comprising just the server at a stationary M/M/1 queue,
use Little’s Law to show that the probability the server is busy is λµ, where λ is the arrival
rate at the queue, and µ is the mean service time of a customer.

Customers arrive according to a Poisson process with rate λ at a single server, but
a restricted waiting room causes those who arrive when n customers are already present
to be lost. Accepted customers have service times which are independent and identically
distributed with mean µ and independent of the arrival process. (Service times are not
necessarily exponentially distributed.) If Pj is the long-run proportion of time j customers
are present, show that

1− P0 = λµ(1− Pn) .

2

Derive Erlang’s formula E(ν,C), for the proportion of calls lost at a resource of
capacity C offered a load of ν. State clearly any assumptions you make in your derivation.

Define a loss network with fixed routing, and describe briefly how the equations

Bj = E





∑

r

Ajrνr
∏

i∈r−{j}

(1−Bi), Cj



 , j = 1, 2, . . . , J (1)

arise as a natural approximation for the link blocking probabilities in the network.

Establish the existence and uniqueness of a solution to the equations (1).
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3

Briefly outline a mathematical model of the slotted infinite-population ALOHA
random access scheme, obtaining the recurrence

Nt+1 = Nt + Yt − I[Zt = 1] ,

for Nt, the backlog of packets awaiting retransmission, where Zt = 0, 1 or ∗ accordingly
as 0,1 or more than 1 packets are transmitted in slot (t, t + 1), and Yt is the number of
arrivals in slot (t − 1, t). Let f be the probability a backlogged packet is retransmitted.
Explain why Nt is a Markov chain and determine its transition probabilities.

Prove that for any positive arrival rate

P{∃J < ∞ : Zt = ∗, for all t > J} = 1 .

Briefly outline at least one other random access scheme, where the retransmission
probability of a packet is not constant.

4

Write an essay on the concept of an effective bandwidth. Your essay should include,
but not be limited to, a derivation of Chernoff’s bound, and an interpretation of the
expression

α(s) =
1

s
logE[esX ]

when the parameter s is (i) small, (ii) large.
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The dynamical system

d

dt
µj(t) = κjµj(t)





∑

r:j∈r

xr(t)− qj(µj(t))



 j ∈ J

xr(t) =
wr

∑

k∈r µk(t)
r ∈ R

is proposed as a model for resource allocation in a network, where R is set of routes, J
is a set of resources, and for j ∈ J , κj > 0, and qj(·) is a continuous, strictly increasing
function with qj(0) = 0.

Provide a brief interpretation of this model, in terms of price signals generated by
resources and acted upon by routes.

By considering the function

V (µ) =
∑

r∈R

wr log





∑

j∈r

µj



−
∑

j∈J

∫ µj

0

qj(η)dη

or otherwise, show that all trajectories of the dynamical system converge toward a unique
equilibrium point.
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