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Let A = CSn be the group algebra of the symmetric group. Define the terms
partition λ of n, Young tableau tλ of shape λ and Young symmetrizer h(tλ) of a given
tableau. Define the dictionary order > on the set of partitions of n.

If λ > µ are partitions of n, and tλ and tµ are Young tableaux of shape λ and µ,
respectively, show that one of the following statements is true:

(A) There are distinct integers i and j which occur in the same row of tλ and the
same column of tµ.

(B) λ = µ and tµ = rc tλ for some element r in the row stabiliser of tλ and some
element c in the column stabiliser of tλ.

For fixed n, show that the set of left ideals of A of the form Ahλ, where hλ is a
certain Young symmetrizer, and λ runs through the partitions of n, is a complete set of
non-isomorphic irreducible A-modules (called the Specht modules).

[Standard facts about semisimple algebras may be assumed, as can basic properties
of Young symmetrizers.]
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In what follows below we will use the notation of question 1. Also, standard facts
about semisimple algebras may be assumed, as can basic properties of Young symmetrizers.

Let A = CSn. Let λ be a partition of n. What is a standard λ-tableau? Define the
usual order 6 on the standard tableau of a given shape.

Show that, if tλ > t′λ are standard tableaux then h(tλ) h(t
′

λ) = 0.

Prove that
A ∼=

⊕
Ah(tλ)

where the (direct) sum is over all standard tableau of shape λ, as λ runs through the
partitions of n.

Deduce a result about the dimension of the Specht module associated to λ.
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Let V be a vector space of dimension m and let n ∈ N. Define the usual actions of
Sn and GL(V ) on tensor space T nV = V ⊗n. Show that these two actions commute.

Define the Schur algebra SC(m,n), which you may assume to be a semisimple C-
algebra.

State and prove Schur-Weyl duality. [You may assume basic results from algebraic
geometry, and basic results from multilinear algebra.]
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Let V be an m-dimensional vector space over C.

If λ = (λ1, . . . , λm) ∈ Z
m with weakly decreasing parts, define the CGL(V )-module

Dλ = Dλ1,...,λm
(V ). If you wish, you may assume these modules are irreducible rational

CGL(V )-modules. Denote by φλ its character.

Let α be an Sn-conjugacy class with cycle type nαn . . . 1α1 and let ξ be an
endomorphism of V with eigenvalues x1, . . . , xm. If si is the power sum, show that

sα1

1 · · · sαn

n =
∑

λ∈Λ+(n,m)

χλ(α)φλ(ξ)

where summation is taken over the partitions λ of n into at most m parts, and where χλ

is the character of the corresponding Specht module. [Results about semisimple modules
and about characters of the symmetric group can be assumed.]

State Weyl’s character formula for the general linear group and deduce it using the
previous result.

Deduce the precise form of the m-tuple µ such that the dual of Dλ1,...,λm
(V ) is

isomorphic to Dµ.
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Let W be a finite-dimensional vector space over C with coordinate ring C[W ]. Let
G be a group. If W is a CG-module, explain how C[W ] inherits a CG-structure. Define
the polynomial invariant ring C[W ]G. Define also the discriminant of a monic polynomial
f(t) ∈ C[t].

Let An denote the alternating group of degree (n > 2). Quoting any facts you
may need about symmetric polynomials, show that C[X1, . . . ,Xn]

An is a quotient of a
polynomial algebra in n+ 1 indeterminates.

Let ρ : G →GL(W ) be a representation of any finite group G. Suppose that there is
no non-trivial homomorphismG → C

×. Show directly that C[W ]G is a unique factorisation
domain. By considering a representation of the cyclic group of order 2, or otherwise, show
that a polynomial invariant ring can fail to be a unique factorisation domain, even in
characteristic zero.
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