MATHEMATICAL TRIPOS Part III

Friday, 1 June, 2012 $\,$ 9:00 am to 12:00 pm

PAPER 3

REPRESENTATION THEORY AND INVARIANT THEORY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

1

Let $A = \mathbb{C}S_n$ be the group algebra of the symmetric group. Define the terms partition λ of n, Young tableau t_{λ} of shape λ and Young symmetrizer $h(t_{\lambda})$ of a given tableau. Define the dictionary order \geq on the set of partitions of n.

If $\lambda \ge \mu$ are partitions of n, and t_{λ} and t_{μ} are Young tableaux of shape λ and μ , respectively, show that one of the following statements is true:

(A) There are distinct integers i and j which occur in the same row of t_{λ} and the same column of t_{μ} .

(B) $\lambda = \mu$ and $t_{\mu} = rc t_{\lambda}$ for some element r in the row stabiliser of t_{λ} and some element c in the column stabiliser of t_{λ} .

For fixed n, show that the set of left ideals of A of the form Ah_{λ} , where h_{λ} is a certain Young symmetrizer, and λ runs through the partitions of n, is a complete set of non-isomorphic irreducible A-modules (called the *Specht modules*).

[Standard facts about semisimple algebras may be assumed, as can basic properties of Young symmetrizers.]

$\mathbf{2}$

In what follows below we will use the notation of question 1. Also, standard facts about semisimple algebras may be assumed, as can basic properties of Young symmetrizers.

Let $A = \mathbb{C}S_n$. Let λ be a partition of n. What is a *standard* λ -*tableau*? Define the usual order \leq on the standard tableau of a given shape.

Show that, if $t_{\lambda} > t'_{\lambda}$ are standard tableaux then $h(t_{\lambda}) h(t'_{\lambda}) = 0$.

Prove that

$$A \cong \bigoplus Ah(t_{\lambda})$$

where the (direct) sum is over all standard tableau of shape λ , as λ runs through the partitions of n.

Deduce a result about the dimension of the Specht module associated to λ .

UNIVERSITY OF

3

Let V be a vector space of dimension m and let $n \in \mathbb{N}$. Define the usual actions of S_n and GL(V) on tensor space $T^n V = V^{\otimes n}$. Show that these two actions commute.

Define the Schur algebra $S_{\mathbb{C}}(m,n)$, which you may assume to be a semisimple \mathbb{C} -algebra.

State and prove Schur-Weyl duality. [You may assume basic results from algebraic geometry, and basic results from multilinear algebra.]

 $\mathbf{4}$

Let V be an m-dimensional vector space over \mathbb{C} .

If $\lambda = (\lambda_1, \ldots, \lambda_m) \in \mathbb{Z}^m$ with weakly decreasing parts, define the $\mathbb{C}GL(V)$ -module $D_{\lambda} = D_{\lambda_1, \ldots, \lambda_m}(V)$. If you wish, you may assume these modules are irreducible rational $\mathbb{C}GL(V)$ -modules. Denote by ϕ_{λ} its character.

Let α be an S_n -conjugacy class with cycle type $n^{\alpha_n} \dots 1^{\alpha_1}$ and let ξ be an endomorphism of V with eigenvalues x_1, \dots, x_m . If s_i is the power sum, show that

$$s_1^{\alpha_1}\cdots s_n^{\alpha_n} = \sum_{\lambda\in\Lambda^+(n,m)}\chi^\lambda(\alpha)\phi_\lambda(\xi)$$

where summation is taken over the partitions λ of n into at most m parts, and where χ^{λ} is the character of the corresponding Specht module. [Results about semisimple modules and about characters of the symmetric group can be assumed.]

State Weyl's character formula for the general linear group and deduce it using the previous result.

Deduce the precise form of the *m*-tuple μ such that the dual of $D_{\lambda_1,\dots,\lambda_m}(V)$ is isomorphic to D_{μ} .

UNIVERSITY OF

 $\mathbf{5}$

Let W be a finite-dimensional vector space over \mathbb{C} with coordinate ring $\mathbb{C}[W]$. Let G be a group. If W is a $\mathbb{C}G$ -module, explain how $\mathbb{C}[W]$ inherits a $\mathbb{C}G$ -structure. Define the *polynomial invariant ring* $\mathbb{C}[W]^G$. Define also the discriminant of a monic polynomial $f(t) \in \mathbb{C}[t]$.

Let A_n denote the alternating group of degree $(n \ge 2)$. Quoting any facts you may need about symmetric polynomials, show that $\mathbb{C}[X_1, \ldots, X_n]^{A_n}$ is a quotient of a polynomial algebra in n + 1 indeterminates.

Let $\rho: G \to \operatorname{GL}(W)$ be a representation of any finite group G. Suppose that there is no non-trivial homomorphism $G \to \mathbb{C}^{\times}$. Show directly that $\mathbb{C}[W]^G$ is a unique factorisation domain. By considering a representation of the cyclic group of order 2, or otherwise, show that a polynomial invariant ring can fail to be a unique factorisation domain, even in characteristic zero.

END OF PAPER