

### MATHEMATICAL TRIPOS Part III

Friday, 8 June, 2012 1:30 pm to 4:30 pm

## PAPER 29

## PRIME NUMBERS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# UNIVERSITY OF

1

State and prove the Möbius inversion formula.

State the prime number theorem with classical error term.

Deduce that

$$\frac{1}{X} \Big| \sum_{n \leqslant X} \mu(n) \Big| \ll 1/\log X.$$

 $\mathbf{2}$ 

#### $\mathbf{2}$

Define the Granville–Soundararajan distance D(f, g; X) between two arithmetical functions  $f, g : \mathbb{N} \to \mathbb{C}$  with |f(p)| = |g(p)| = 1 for all primes p, and show that it is a distance.

State and prove an asymptotic for  $D(1, \mu; X)$ , where  $\mu$  is the Möbius function.

Let  $f: \mathbb{N} \to \mathbb{C}$  be a multiplicative function supported on the squarefrees, and write

$$\nu = \sum_{n \in \mathbb{N}} \delta_{\log n} f(n) n^{-1 - \frac{1}{\log X}}$$

Show that if  $|\hat{\nu}(t)| \ge \delta \log X$  then  $D(f, n^{it}; X) = O_{\delta}(1)$ .

#### 3

Define the Riemann  $\zeta$ -function  $\zeta(s)$  for  $\Re s > 1$ . Show that it admits a meromorphic extension to  $\Re s > 0$ , analytic except for a simple pole at s = 1. Define the  $\Gamma$ -function and state the functional equation for  $\zeta$ . What is meant by the *critical strip*? Show that  $\zeta$  has zeros at  $-2, -4, -6, \ldots$  and nowhere else outside the critical strip.

[You may assume that  $z\Gamma(z) = \Gamma(z+1)$  for  $\Re z > 0$  without proof, as well as the fact that  $\Gamma(z) \neq 0$ .]

Prove that the number of zeros of  $\zeta(s)$  in the critical strip with imaginary part of magnitude at most T ( $T \ge 2$ ) is  $O(T \log T)$ .

[You may use Jensen's formula without proof.]

Show that  $\zeta$  has no zeros on the line  $\Re s = 1$ .

# UNIVERSITY OF

 $\mathbf{4}$ 

"If a bounded function  $f : \mathbb{N} \to \mathbb{C}$  correlates with the Möbius function then f is either somewhat periodic or somewhat multiplicative". State a precise version of this principle.

Show that

$$\lim_{X \to \infty} \frac{1}{X} \Big| \sum_{n \leqslant X} \mu(n) e(n\sqrt{2}) \Big| = 0.$$

 $\mathbf{5}$ 

Let  $\phi : \mathbb{R} \to \mathbb{R}$  be a smooth function with  $\phi(0) = 1$  and  $\phi(x) = 0$  for  $|x| \ge 1/3$  (you may assume without proof that such a function exists). Explain why the function

$$F(n) = \left(\sum_{d|n} \mu(d)\phi(\frac{\log d}{\log X})\right)^2$$

satisfies F(p) = 1 whenever  $p > X^{1/3}$  is a prime.

Define a function  $\psi$  by

$$e^x \phi(x) = \int_{-\infty}^{\infty} \psi(t) e^{-ixt} dt.$$

Show that for any fixed A > 0 we have the estimate  $|\psi(t)| \ll_A |t|^{-A}$  for all  $|t| \ge 1$  [you may assume the Fourier inversion formula].

Find a simple expression for

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\psi(t)\psi(t')\frac{(1+it)(1+it')}{2+it+it'}dtdt'.$$

Hence, or otherwise, give an asymptotic as  $X \to \infty$  for

$$\sum_{n\in I}F(n),$$

for any interval  $I \subseteq \mathbb{N}$  of length X.

[You should give no more than the basic structure of the proof, to the point where an educated reader could reasonably easily fill in, or at least believe, the details.]

Show that

$$\pi(X_0 + X) - \pi(X_0) \ll \frac{X}{\log X}$$

whenever  $X_0, X \ge 2$ .

Part III, Paper 29

#### [TURN OVER



4

# END OF PAPER