MATHEMATICAL TRIPOS Part III

Monday, 11 June, 2012 1:30 pm to 4:30 pm

PAPER 28

LOCAL FIELDS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

- 1
- (a) State and prove a classification of the non-archimedean absolute values on \mathbb{Q} .
- (b) Let $(K, |\cdot|)$ be a non-archimedean locally compact valued field, and let $t \in K$ be an element satisfying 0 < |t| < 1.
 - (i) Show there exists a finite subset $A \subset K$ such that every element of K can be written uniquely as a Laurent power series in t with coefficients in A.
 - (ii) Show that if char(K) = 0 then K is a finite extension of \mathbb{Q}_p for some prime p.
 - (iii) Give an example of a field that is complete with respect to a discrete valuation but is not locally compact. Justify your answer.

$\mathbf{2}$

- (a) State and prove a version of Hensel's lemma.
- (b) Determine the number of roots of $f(X) = X^3 5X + 20$ in \mathbb{Z}_p for p = 2, 3, 5.
- (c) Let $K = \mathbb{Q}(\alpha)$ where α is a root of f. Show that the different of K is $\mathfrak{p}^2\mathfrak{q}$ where \mathfrak{p} and \mathfrak{q} are ideals in \mathcal{O}_K of norms 5 and 103.

[The discriminant of $X^3 + aX + b$ is $-4a^3 - 27b^2$. General facts about the different may be quoted without proof provided you state them clearly.]

3

- (a) Prove that if non-trivial absolute values $|\cdot|_1$ and $|\cdot|_2$ on a field K induce the same topology then there exists c > 0 such that $|x|_2 = |x|_1^c$ for all $x \in K$.
- (b) Let K be a number field and S a finite set of places of K.
 - (i) Define the group of idèles J_K . Show that if $x \in J_K$ and $\varepsilon > 0$ then there exists $y \in K$ such that $|x_v y|_v < \varepsilon$ for all $v \in S$.
 - (ii) Show that there is a quadratic extension L/K such that every (finite) prime \mathfrak{p} in S is inert in L (i.e. \mathfrak{pO}_L is a prime).

UNIVERSITY OF CAMBRIDGE

- $\mathbf{4}$
- (a) Show that an extension of *p*-adic fields L/K is totally ramified if and only if $L = K(\alpha)$ where α is a root of an Eisenstein polynomial.
- (b) State and prove Krasner's lemma.
- (c) Show that there are only finitely many extensions of K of any given degree. Determine the number of quadratic extensions of K in the case p is odd.

[Results about unramified extensions may be quoted without proof.]

$\mathbf{5}$

Write an essay on

EITHER : The Herbrand quotient and its role in norm index calculations for L/K a cyclic extension of *p*-adic fields.

OR : The Hilbert norm residue symbol and the Hasse-Minkowski theorem.

END OF PAPER