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INTRODUCTION TO IWASAWA THEORY

Attempt ALL questions.

There are FOUR questions in total.

The questions carry equal weight.

Notation: If p is a prime number, Zp will denote the ring lim
←−

Z/pnZ. If K/F is a

Galois extension of fields, Gal(K/F ) will denote the Galois group of K over F .
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1

Let p be any prime number. Prove that there exists a Galois extension Q[ p∞] of Q
so that Gal(Q[ p∞]/Q)

∼

→ Zp. For each integer n > 0, let Q[ pn] denote the unique subfield
of Q[ p∞] of degree pn over Q, and write h(pn) for the class number of Q[ pn]. If n 6 m,
prove that h(pn) divides h(pm). [You may assume that p is totally ramified in Q[ pn] for
all n > 1.]

2

Let K be a finite extension of Q, and p any prime number. Assume that K∞ is any
Galois extension of K such that Gal(K∞/K)

∼

→ Zp. Prove that at least one finite prime
of K must ramify in K∞. Prove also that if v is any finite prime of K which does ramify
in K∞, then v must divide p. Finally, if K∞ is the cyclotomic Zp-extension of K, prove
that every prime of K dividing p must ramify in K∞.

3

Let F be a finite extension of Q, and F∞/F a Galois extension with Γ =
Gal(F∞/F )

∼

→ Zp. Let γ be a topological generator of Γ. Assume that M∞ is a Galois
extension of F such that X = Gal(M∞/F∞) is abelian and pro-p. Define the natural
structure of X as a module over the Iwasawa algebra of Γ. Let M be the maximal abelian
extension of F contained in M∞. Prove that

Gal(M/F∞) = X/(γ − 1)X .

4

Write an essay on one of the following two topics:-

(i). Let p be an odd prime number, and let F∞ be the field obtained by adjoining all
p-power roots of unity to Q. Put G = Gal(F∞/Q). Let M∞ be the maximal abelian
p-extension of F∞, which is unramified outside of p. Put X = Gal(M∞/F∞). Describe
what is known about the structure of X as a Galois module over the Iwasawa algebra of
G, and indicate how these results are proven.

(ii). Let F be any finite extension of Q, and F∞/F any Galois extension with Γ =
Gal(F∞/F )

∼

→ Zp. Let L∞ be the maximal unramified abelian p-extension of F∞, and
put Y = Gal(L∞/F∞). Sketch the proof that Y is always a torsion module over the
Iwasawa algebra of Γ.
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