### MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2012  $\,$  1:30 pm to 4:30 pm

## PAPER 26

## INTRODUCTION TO IWASAWA THEORY

Attempt **ALL** questions.

There are **FOUR** questions in total. The questions carry equal weight.

**Notation:** If p is a prime number,  $\mathbb{Z}_p$  will denote the ring  $\varprojlim \mathbb{Z}/p^n\mathbb{Z}$ . If K/F is a Galois extension of fields,  $\operatorname{Gal}(K/F)$  will denote the Galois group of K over F.

### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# UNIVERSITY OF

1

Let p be any prime number. Prove that there exists a Galois extension  $\mathbb{Q}[p^{\infty}]$  of  $\mathbb{Q}$  so that  $\operatorname{Gal}(\mathbb{Q}[p^{\infty}]/\mathbb{Q}) \xrightarrow{\sim} \mathbb{Z}_p$ . For each integer  $n \ge 0$ , let  $\mathbb{Q}[p^n]$  denote the unique subfield of  $\mathbb{Q}[p^{\infty}]$  of degree  $p^n$  over  $\mathbb{Q}$ , and write  $h(p^n)$  for the class number of  $\mathbb{Q}[p^n]$ . If  $n \le m$ , prove that  $h(p^n)$  divides  $h(p^m)$ . [You may assume that p is totally ramified in  $\mathbb{Q}[p^n]$  for all  $n \ge 1$ .]

### $\mathbf{2}$

Let K be a finite extension of  $\mathbb{Q}$ , and p any prime number. Assume that  $K_{\infty}$  is any Galois extension of K such that  $\operatorname{Gal}(K_{\infty}/K) \xrightarrow{\sim} \mathbb{Z}_p$ . Prove that at least one finite prime of K must ramify in  $K_{\infty}$ . Prove also that if v is any finite prime of K which does ramify in  $K_{\infty}$ , then v must divide p. Finally, if  $K_{\infty}$  is the cyclotomic  $\mathbb{Z}_p$ -extension of K, prove that every prime of K dividing p must ramify in  $K_{\infty}$ .

### 3

Let F be a finite extension of  $\mathbb{Q}$ , and  $F_{\infty}/F$  a Galois extension with  $\Gamma = \operatorname{Gal}(F_{\infty}/F) \xrightarrow{\sim} \mathbb{Z}_p$ . Let  $\gamma$  be a topological generator of  $\Gamma$ . Assume that  $M_{\infty}$  is a Galois extension of F such that  $X = \operatorname{Gal}(M_{\infty}/F_{\infty})$  is abelian and pro-p. Define the natural structure of X as a module over the Iwasawa algebra of  $\Gamma$ . Let M be the maximal abelian extension of F contained in  $M_{\infty}$ . Prove that

$$\operatorname{Gal}(M/F_{\infty}) = X/(\gamma - 1)X.$$

#### $\mathbf{4}$

Write an essay on <u>one</u> of the following two topics:-

(i). Let p be an odd prime number, and let  $F_{\infty}$  be the field obtained by adjoining all p-power roots of unity to  $\mathbb{Q}$ . Put  $G = \operatorname{Gal}(F_{\infty}/\mathbb{Q})$ . Let  $M_{\infty}$  be the maximal abelian p-extension of  $F_{\infty}$ , which is unramified outside of p. Put  $X = \operatorname{Gal}(M_{\infty}/F_{\infty})$ . Describe what is known about the structure of X as a Galois module over the Iwasawa algebra of G, and indicate how these results are proven.

(ii). Let F be any finite extension of  $\mathbb{Q}$ , and  $F_{\infty}/F$  any Galois extension with  $\Gamma = \operatorname{Gal}(F_{\infty}/F) \xrightarrow{\sim} \mathbb{Z}_p$ . Let  $L_{\infty}$  be the maximal unramified abelian *p*-extension of  $F_{\infty}$ , and put  $Y = \operatorname{Gal}(L_{\infty}/F_{\infty})$ . Sketch the proof that Y is always a torsion module over the Iwasawa algebra of  $\Gamma$ .



3

## END OF PAPER

Part III, Paper 26