

MATHEMATICAL TRIPOS Part III

Thursday, 7 June, 2012 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 21

GALOIS COHOMOLOGY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

2

1

Let K be a field and let A be a central simple algebra over K.

1. Give the definition of the reduced norm $\operatorname{Nrd} : A \to K$ and show that it does not depend on choices.

2. Define the C_r -property for fields and state the theorems of Chevalley, Lang and Tsen respectively, giving examples of C_1 -fields [no proofs are required]. Let L/K be a finite extension of fields. Show that if K is C_1 , then L is C_1 .

3. Prove that if K is C_1 , then Br(K) = 0.

4. If K is the function field of a curve over a finite field, show that A is split by a cyclic extension of K.

5. Let K be a C_2 -field and let D be a central division algebra over K. Show that Nrd : $D \to K$ is surjective.

$\mathbf{2}$

Let K be a (non-archimedean) complete local field with perfect residue field k. State Witt's theorem [no proof is required].

From now on, k is a finite field. Define explicitly the invariant map $\operatorname{inv}_K : Br(K) \to \mathbf{Q}/\mathbf{Z}$ and show that it is an isomorphism [you may quote without proof any results from the lectures concerning the cohomology of finite fields and the Brauer group of the maximal unramified extension of K].

Let L/K be a finite field extension. Show that $\operatorname{inv}_K \circ \operatorname{Cor}_{L/K} = \operatorname{inv}_L$ and $\operatorname{inv}_L \circ \operatorname{Res}_{L/K} = [L:K] \cdot \operatorname{inv}_K$.

How many division algebras central over K of degree n are there, up to isomorphism? [You may quote any results from the lectures concerning division algebras and their splitting fields.]

3

Let L/K be a finite Galois extension. State and prove Galois descent for finitedimensional L-vector spaces equipped with a semi-linear action of $\operatorname{Gal}(L/K)$.

Let $\operatorname{CSA}_n(L/K)$ be the set of isomorphism classes of central simple algebras over K of degree n split by L. Define a natural map $\operatorname{CSA}_n(L/K) \to H^1(\operatorname{Gal}(L/K), \operatorname{Aut}_L(M_n(L)))$ and prove it is an isomorphism.

UNIVERSITY OF

 $\mathbf{4}$

In this question, any results from the lectures can be assumed without proof as long as they are clearly stated.

1. Let K be a field of characteristic p > 0. Show that Br(K) is p-divisible, i.e. that for all $x \in Br(K)$ there exists a $y \in Br(K)$ such that x = py.

2. Let now K be a field of characteristic $\neq p$ and let n be a positive integer. Let K_s denote a separable closure of K. Show that the following statements are equivalent:

- (i) $\operatorname{cd}_p(K) \leq n$
- (ii) For all algebraic extensions L/K, we have $H^{n+1}(L, K_s^{\times})\{p\} = 0$ and $H^n(L, K_s^{\times})$ is *p*-divisible.
- (iii) For all finite extensions L/K of degree prime to p, we have $H^{n+1}(L, K_s^{\times})\{p\} = 0$ and $H^n(L, K_s^{\times})$ is p-divisible.

Here, for A a torsion abelian group, $A\{p\}$ denotes the p-primary torsion subgroup of A. It might be useful to introduce the Galois module μ_p of p^{th} -roots of unity in K_s^{\times} .

END OF PAPER