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Consider R2n with the standard symplectic form.

i) Define a canonical transformation f : R2n −→ R
2n.

ii) Define the Poisson bracket {·, ·}(q,p). Let

f : R2n −→ R
2n

(q, p) 7−→ (Q,P )

be a diffeomorphism. Prove that the following properties are equivalent:

a) f is a canonical transformation;

b) ∀ F,G ∈ C1(R2n,R), one has

{F,G}(Q,P ) ◦ f = {F ◦ f,G ◦ f}(q,p) ;

c) {Qi, Qj}(q,p) = {Pi, Pj}(q,p) = 0 and {Qi, Pj}(q,p) = {qi, pj}(q,p) for all
i, j = 1, . . . , n.

iii) Let Q = a(q, p) be a C2 transformation from R
2n to R

n, such that rank
(

∂a
∂q
, ∂a
∂p

)

= n.
Provide (with proof) sufficient and necessary conditions to extend a to a canonical
transformation in a neighbourhood of any point, i.e. to extend it locally to
(Q,P ) = f(q, p), where fi = ai for all i = 1, . . . , n.
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Let (M,ω) be a symplectic manifold and let H : M −→ R be a C2 Hamiltonian.

i) Define an integral of motion of H. Let F be a C2 integral of motion of H. Is it true
that H is an integral of motion of F? Prove that the corresponding Hamiltonian
vector fields XF and XH commute.

ii) Consider on R
4 the Hamiltonian system given by

H(x1, x2, y1, y2) =
1

2

(

y21 + y22
)

+
1

2

(

α2
1x

2
1 + α2

2x
2
2

)

,

with α1, α2 > 0. Find two integrals of motion, which are in involution and are
functionally independent on R

4 \
(

{x1 = y1 = 0} ∪ {x2 = y2 = 0}
)

.

If
α2

α1
is irrational, prove that there cannot be further independent integrals of

motion.
[Hint: Consider the change of coordinates

(
√
αixi,

1√
αi

yi) = (
√

2Ri sin θi,
√

2Ri cos θi) i = 1, 2. ]

iii) Consider a Hamiltonian H : R
2n −→ R with r integrals of motion: G1 =

H,G2, . . . , Gr. For c = (c1, . . . , cr) ∈ Bρ(0) ⊂ R
r, let us consider the common

level sets
Σc := {G1 = c1, . . . , Gr = cr}

and suppose that dG1, . . . , dGr are linearly independent on Σc for c ∈ Bρ(0). Prove
that there exists a Hamiltonian K such that XK

∣

∣Σ0

= XH
∣

∣Σ0

, but XK
∣

∣Σc

6= XH
∣

∣Σc

for all other c ∈ Bρ(0) \ {0}.

3

Let (M,ω) be a symplectic manifold.

i) Define a completely integrable Hamiltonian system and provide an example (with
justification).

ii) State and prove the Liouville–Arnol’d theorem on the integrability of Hamiltonian
systems.
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i) Let ω ∈ R
n. Explain what it means for ω to be (γ, τ)-Diophantine, with γ > 0 and

τ > n− 1.
Let H(Tn

σ) be the set of real-analytic functions f : Tn → R with holomorphic ex-
tension on T

n
σ := {x ∈ C

n : |Imxj | 6 σ, Rexj ∈ T for j = 1, . . . , n}, with norm
|f |σ = supTd

σ
|f |. Let us consider the differential operator Dω := ω1

∂
∂x1

+. . .+ωn
∂

∂xn
.

Under which conditions on g ∈ H(Tn
σ), does there exist a solution to the cohomo-

logical equation Dωf = g ? Is this solution unique? Prove that for each 0 < δ < σ,
f is in H(Tn

σ−δ) and provide an upper bound for |f − 〈f〉|σ−δ , where 〈f〉 denotes
the average of f on T

n.

ii) Consider the Hamiltonian H(x, y) = ω · y + 1
2‖y‖2 + ǫV (x) defined on T

n × Bn,
where Bn ⊂ R

n is an open ball centered at the origin. Assume that ω is (γ, τ)-
Diophantine, and V is analytic. Prove that if ǫ is sufficiently small, there exists a
symplectic transformation (x, y) = Φ(x′, y′) close to the identity, such that

H ◦ Φ(x′, y′) = Eǫ + ω · y′ + 1

2
Qǫ(x

′, y′) + ǫ2Ṽ (x)

where Eǫ = O(ǫ) and Qǫ is quadratic in y′ and ǫ-close to ‖y′‖2.
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