MATHEMATICAL TRIPOS Part III

Friday, 1 June, 2012 1:30 pm to 4:30 pm

PAPER 20

HAMILTONIAN DYNAMICAL SYSTEMS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Consider \mathbb{R}^{2n} with the standard symplectic form.

- i) Define a canonical transformation $f : \mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n}$.
- ii) Define the Poisson bracket $\{\cdot,\cdot\}_{(q,p)}.$ Let

$$\begin{array}{cccc} f: \mathbb{R}^{2n} & \longrightarrow & \mathbb{R}^{2n} \\ (q,p) & \longmapsto & (Q,P) \end{array}$$

be a diffeomorphism. Prove that the following properties are equivalent:

- a) f is a canonical transformation;
- b) $\forall F, G \in C^1(\mathbb{R}^{2n}, \mathbb{R})$, one has

$$\{F,G\}_{(Q,P)} \circ f = \{F \circ f, G \circ f\}_{(q,p)};$$

- c) $\{Q_i, Q_j\}_{(q,p)} = \{P_i, P_j\}_{(q,p)} = 0$ and $\{Q_i, P_j\}_{(q,p)} = \{q_i, p_j\}_{(q,p)}$ for all $i, j = 1, \dots, n$.
- iii) Let Q = a(q, p) be a C^2 transformation from \mathbb{R}^{2n} to \mathbb{R}^n , such that $\operatorname{rank}\left(\frac{\partial a}{\partial q}, \frac{\partial a}{\partial p}\right) = n$. Provide (with proof) sufficient and necessary conditions to extend a to a canonical transformation in a neighbourhood of any point, *i.e.* to extend it locally to (Q, P) = f(q, p), where $f_i = a_i$ for all $i = 1, \ldots, n$.

3

 $\mathbf{2}$

Let (M, ω) be a symplectic manifold and let $H: M \longrightarrow \mathbb{R}$ be a C^2 Hamiltonian.

- i) Define an *integral of motion* of H. Let F be a C^2 integral of motion of H. Is it true that H is an integral of motion of F? Prove that the corresponding Hamiltonian vector fields X_F and X_H commute.
- ii) Consider on \mathbb{R}^4 the Hamiltonian system given by

$$H(x_1, x_2, y_1, y_2) = \frac{1}{2} (y_1^2 + y_2^2) + \frac{1}{2} (\alpha_1^2 x_1^2 + \alpha_2^2 x_2^2),$$

with $\alpha_1, \alpha_2 > 0$. Find two integrals of motion, which are in involution and are functionally independent on $\mathbb{R}^4 \setminus (\{x_1 = y_1 = 0\} \cup \{x_2 = y_2 = 0\}).$

If $\frac{\alpha_2}{\alpha_1}$ is irrational, prove that there cannot be further independent integrals of motion.

[Hint: Consider the change of coordinates

$$\left(\sqrt{\alpha_i}x_i, \frac{1}{\sqrt{\alpha_i}}y_i\right) = \left(\sqrt{2R_i}\sin\theta_i, \sqrt{2R_i}\cos\theta_i\right) \qquad i = 1, 2.$$

iii) Consider a Hamiltonian $H : \mathbb{R}^{2n} \longrightarrow \mathbb{R}$ with r integrals of motion: $G_1 = H, G_2, \ldots, G_r$. For $c = (c_1, \ldots, c_r) \in B_{\rho}(0) \subset \mathbb{R}^r$, let us consider the common level sets

$$\Sigma_c := \{G_1 = c_1, \dots, G_r = c_r\}$$

and suppose that dG_1, \ldots, dG_r are linearly independent on Σ_c for $c \in B_\rho(0)$. Prove that there exists a Hamiltonian K such that $X_{K|\Sigma_0} = X_{H|\Sigma_0}$, but $X_{K|\Sigma_c} \neq X_{H|\Sigma_c}$ for all other $c \in B_\rho(0) \setminus \{0\}$.

3

Let (M, ω) be a symplectic manifold.

- i) Define a *completely integrable* Hamiltonian system and provide an example (with justification).
- ii) State and prove the Liouville–Arnol'd theorem on the integrability of Hamiltonian systems.

UNIVERSITY OF

the average of f on \mathbb{T}^n .

- $\mathbf{4}$
- i) Let $\omega \in \mathbb{R}^n$. Explain what it means for ω to be (γ, τ) -Diophantine, with $\gamma > 0$ and $\tau \ge n-1$. Let $\mathcal{H}(\mathbb{T}^n_{\sigma})$ be the set of real-analytic functions $f : \mathbb{T}^n \to \mathbb{R}$ with holomorphic extension on $\mathbb{T}^n_{\sigma} := \{x \in \mathbb{C}^n : |\operatorname{Im} x_j| \le \sigma, \operatorname{Re} x_j \in \mathbb{T} \text{ for } j = 1, \ldots, n\}$, with norm $|f|_{\sigma} = \sup_{\mathbb{T}^d_{\sigma}} |f|$. Let us consider the differential operator $\mathcal{D}_{\omega} := \omega_1 \frac{\partial}{\partial x_1} + \ldots + \omega_n \frac{\partial}{\partial x_n}$. Under which conditions on $g \in \mathcal{H}(\mathbb{T}^n_{\sigma})$, does there exist a solution to the cohomological equation $\mathcal{D}_{\omega} f = g$? Is this solution unique? Prove that for each $0 < \delta < \sigma$, f is in $\mathcal{H}(\mathbb{T}^n_{\sigma-\delta})$ and provide an upper bound for $|f - \langle f \rangle|_{\sigma-\delta}$, where $\langle f \rangle$ denotes

4

ii) Consider the Hamiltonian $H(x, y) = \omega \cdot y + \frac{1}{2} ||y||^2 + \epsilon V(x)$ defined on $\mathbb{T}^n \times B^n$, where $B^n \subset \mathbb{R}^n$ is an open ball centered at the origin. Assume that ω is (γ, τ) -Diophantine, and V is analytic. Prove that if ϵ is sufficiently small, there exists a symplectic transformation $(x, y) = \Phi(x', y')$ close to the identity, such that

$$H \circ \Phi(x',y') = E_{\epsilon} + \omega \cdot y' + \frac{1}{2}Q_{\epsilon}(x',y') + \epsilon^2 \tilde{V}(x)$$

where $E_{\epsilon} = O(\epsilon)$ and Q_{ϵ} is quadratic in y' and ϵ -close to $||y'||^2$.

END OF PAPER