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1

Define the degree of a map f : Sn → Sn.

The suspension SX of a space X is (X × [0, 1])/ ∼, where (x, 0) ∼ (y, 0) and
(x, 1) ∼ (y, 1) for all x, y ∈ X.

Show that, if X is a compact manifold, then SX is a manifold if and only if X is a
sphere.

Show that for every m and n, there is a map f : Sn → Sn of degree m.

2

Define the relative homology groups Hn(X,A), where A is a subspace of the space
X.

Show that, under circumstances which are to be stated, Hn(X,A) is isomorphic to
H̃n(X/A).

Suppose that X is a compact oriented surface of genus 2 and that A is a simple
closed curve in X. Calculate H∗(X/A) in the following cases.

(1) A cuts X into 2 pieces, each a genus 1 surface with a disc removed;

(2) cutting X along A gives a genus 1 surface with 2 discs removed.

3

Describe, in outline, the construction of cellular homology. Show that P2
C

and
P1

C
×P1

C
are not homeomorphic.

Show, by considering copies of P1
C
in P2

C
, that the intersection pairing H2(P

2
C
,Z)×

H2(P
2
C
,Z) → Z is unimodular.
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4

Suppose that A is a commutative ring that is an R-vector space. A non-degenerate
dot product on A is a positive definite symmetric R-bilinear form b : A×A → R, written
as b(x, y) = x · y, such that |xy| = |x| |y|, where |x| = (x · x)1/2, for all x, y ∈ A.

Suppose that A has a non-degenerate dot product and that dimRA = n is finite.
By considering the squaring map, or otherwise, show that n 6 2.

[You may assume the result that if g : M → N is a differentiable map of manifolds
such that g is injective and the derivative g∗ : TmM → Tg(m)N is injective for all m ∈ M ,
and if M is compact, then g is a closed embedding.]

END OF PAPER
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