

MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2012 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 19

ALGEBRAIC TOPOLOGY

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Define the degree of a map $f: S^n \to S^n$.

The suspension SX of a space X is $(X \times [0,1])/\sim$, where $(x,0) \sim (y,0)$ and $(x,1) \sim (y,1)$ for all $x, y \in X$.

 $\mathbf{2}$

Show that, if X is a compact manifold, then SX is a manifold if and only if X is a sphere.

Show that for every m and n, there is a map $f: S^n \to S^n$ of degree m.

$\mathbf{2}$

Define the relative homology groups $H_n(X, A)$, where A is a subspace of the space X.

Show that, under circumstances which are to be stated, $H_n(X, A)$ is isomorphic to $\tilde{H}_n(X/A)$.

Suppose that X is a compact oriented surface of genus 2 and that A is a simple closed curve in X. Calculate $H_*(X|A)$ in the following cases.

(1) A cuts X into 2 pieces, each a genus 1 surface with a disc removed;

(2) cutting X along A gives a genus 1 surface with 2 discs removed.

3

Describe, in outline, the construction of cellular homology. Show that $\mathbf{P}_{\mathbf{C}}^2$ and $\mathbf{P}_{\mathbf{C}}^1 \times \mathbf{P}_{\mathbf{C}}^1$ are not homeomorphic.

Show, by considering copies of $\mathbf{P}^1_{\mathbf{C}}$ in $\mathbf{P}^2_{\mathbf{C}}$, that the intersection pairing $H_2(\mathbf{P}^2_{\mathbf{C}}, \mathbf{Z}) \times H_2(\mathbf{P}^2_{\mathbf{C}}, \mathbf{Z}) \to \mathbf{Z}$ is unimodular.

UNIVERSITY OF

 $\mathbf{4}$

Suppose that A is a commutative ring that is an **R**-vector space. A non-degenerate dot product on A is a positive definite symmetric **R**-bilinear form $b: A \times A \to \mathbf{R}$, written as $b(x,y) = x \cdot y$, such that |xy| = |x| |y|, where $|x| = (x \cdot x)^{1/2}$, for all $x, y \in A$.

Suppose that A has a non-degenerate dot product and that $\dim_{\mathbf{R}} A = n$ is finite. By considering the squaring map, or otherwise, show that $n \leq 2$.

[You may assume the result that if $g: M \to N$ is a differentiable map of manifolds such that g is injective and the derivative $g_*: T_m M \to T_{g(m)} N$ is injective for all $m \in M$, and if M is compact, then g is a closed embedding.]

END OF PAPER