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1

Let H be the complex upper half plane and N a positive integer. Recall that SL2(Z)
acts on H by

(

a b
c d

)

· τ = aτ+b
cτ+d

. For each τ ∈ H, we use Eτ to denote the complex torus
C/Z + Zτ . Consider pairs (E,G) where E is a complex torus of (complex) dimension 1
and G ∼= Z/NZ a subgroup of E. We say that (E1, G1) is equivalent to (E2, G2) if there is
an isomorphism ϕ : E1 → E2 such that ϕ(G1) = G2. We define E to be set of equivalence
classes of the pairs (E,G). Let Φ : H → E be the natural map that sends τ ∈ H to the
pair (Eτ , 〈

1
N
〉) where 〈 1

N
〉 is the cyclic subgroup of Eτ generated by the image of 1

N
.

(i) Show that Φ is surjective.
(ii) Show that Φ(τ1) = Φ(τ2) if and only if τ1 = γ · τ2 for some γ ∈ Γ0(N), where

Γ0(N) =

{

γ =

(

a b
c d

)

∈ SL2(Z) : c ≡ 0 mod N

}

Conclude that E is identified with Γ0(N)\H.

2

Let X = C/Z+Zi be the 1-dimensional complex torus corresponding to τ = i ∈ H.
(i) Write down all hermitian forms H : C × C → C such that E = Im(H) is integral on
the lattice Λ = Z + Zi. Show that the group of all such hermitian forms is canonically
isomorphic to Z and the positive definite ones correspond to Z>0.
(ii) Let H1 be the hermitian form that corresponds to 1 ∈ Z. Describe all α : Λ → C1 =
{z ∈ Z : |z| = 1} such that

α(λ1 + λ2) = eiπE1(λ1,λ2)α(λ1)α(λ2),

where E1 = Im(H1).
(iii) Let α1 be one of the above α’s with α1(1) = α1(i) = 1 and L = L (H1, α1) be
the line bundle associated to (H1, α1) as in the Theorem of Appell–Humbert. Show that
H0(X,L ) is one dimensional.
(iv) Show that the endomorphism algebra End(X) is naturally isomorphic to Z[i].
(v) Let ϕ ∈ End(X) correspond to a+b i ∈ Z[i]. If we write ϕ∗L as L (H,α), give explicit
expressions (in terms of a, b and α1) for H and α.
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Let k be an algebraically closed field of characteristic 0. Let A,B be abelian varieties
defined over k. For any f, g ∈ Hom(A,B) and a line bundle L on B, we define

DL (f, g) = (f + g)∗L ⊗ f∗
L

−1 ⊗ g∗L −1.

(i) Show that the map DL : Hom(A,B)×Hom(A,B) → Pic(X) is symmetric and bilinear.
You may use the theorem of the cube.
(ii) Show that DL (f, g) = (f, φL ◦ g)∗(PB), where PB is the Poincaré line bundle on
B × B̂.
(iii) Show that the map DL only depends on the class of L in NS(B) = Pic(B)/Pic0(B).
(iv) Show that φDL (f,g) = f̂ ◦ φL ◦ g + ĝ ◦ φL ◦ f .

4

Let X/k be an abelian variety defined over an algebraically closed field k. This
question studies the subgroup of X generated by the differences of points on a curve
C ⊂ X.
(i) Let T be a variety and C a smooth projective curve. Given any line bundle M on
C × T , show that the degree deg(M |C×{t}) does not depend on the point t ∈ T . [Hint:
use the upper semi-continuity theorem.]
(ii) Let ϕ : C →֒ X be a smooth projective curve on X and L a line bundle on X. Show
that the degree of ϕ∗T ∗

xL is independent of x ∈ X.
(iii) Let D ⊂ X be an irreducible divisor that does not meet C. Show that T ∗

x1−x2
D = D

for all x1, x2 ∈ C.
(iv) Set L = OX(D). Let Y ⊂ X be the closure of the subgroup generated by
{x1 − x2 : x1, x2 ∈ C}. Show that Y ⊂ K(L ) = {x ∈ X : T ∗

xL ∼= L }.
(v) Show that Y = X if and only if C meets all irreducible divisors D ⊂ X. [You may
assume the following fact: if Y ⊂ X is a Zariski closed abelian subgroup, then there is a
morphism f : X → Z such that Y is one of the fibers.]
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In this question, we work over the field C of complex numbers. Let C1, C2 ⊂ P
2 be

two smooth curves of degree 2 (they are also called conics). Assume that C1 and C2 meet
in 4 distinct points.
(i) Show that the space of lines on P

2, denoted by (P2)∨, is again isomorphic to P
2.

(ii) Let C∨
1 ⊂ (P2)∨ denote the space of lines tangent to C1. Show that C∨

1 is again a
conic.
(iii) Let E ⊂ C∨

1 × C2 consist of all the pairs (l, x) such that x ∈ l ⊂ P
2. Show that

E → C2 is a double cover ramified at 4 points. Conclude that E is a smooth curve of
genus 1.
(iv) Given (l0, x0) ∈ E, then l0 intersects C2 in a second point x1 (the first point is x0).
Through this x0, there is a second line l1 tangent to C1 (the first tangent line is l0). Hence
we get a point (l1, x1) ∈ E. Replace (l0, x0) by (l1, x1) and repeat the above construction.
In this way, we get a sequence

Sl0,x0
: {(l0, x0), (l1, x1), (l2, x2), . . .}

Assume that Sl0,x0
is periodic for some initial point (l0, x0). Show that Sl,x is periodic

for all initial points (l, x) ∈ E. [You may assume any standard results about morphisms
between genus 1 curves, as long as they are clearly stated.]
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