MATHEMATICAL TRIPOS Part III

Friday, 1 June, 2012 9:00 am to 12:00 pm

PAPER 18

ABELIAN VARIETIES

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let \mathcal{H} be the complex upper half plane and N a positive integer. Recall that $\mathrm{SL}_2(\mathbb{Z})$ acts on \mathcal{H} by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau+b}{c\tau+d}$. For each $\tau \in \mathcal{H}$, we use E_{τ} to denote the complex torus $\mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau$. Consider pairs (E, G) where E is a complex torus of (complex) dimension 1 and $G \cong \mathbb{Z}/N\mathbb{Z}$ a subgroup of E. We say that (E_1, G_1) is equivalent to (E_2, G_2) if there is an isomorphism $\varphi : E_1 \to E_2$ such that $\varphi(G_1) = G_2$. We define \mathscr{E} to be set of equivalence classes of the pairs (E, G). Let $\Phi : \mathcal{H} \to \mathscr{E}$ be the natural map that sends $\tau \in \mathcal{H}$ to the pair $(E_{\tau}, \langle \frac{1}{N} \rangle)$ where $\langle \frac{1}{N} \rangle$ is the cyclic subgroup of E_{τ} generated by the image of $\frac{1}{N}$. (i) Show that Φ is surjective.

(ii) Show that $\Phi(\tau_1) = \Phi(\tau_2)$ if and only if $\tau_1 = \gamma \cdot \tau_2$ for some $\gamma \in \Gamma_0(N)$, where

$$\Gamma_0(N) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \mod N \right\}$$

Conclude that \mathscr{E} is identified with $\Gamma_0(N) \setminus \mathcal{H}$.

$\mathbf{2}$

Let $X = \mathbb{C}/\mathbb{Z} + \mathbb{Z}i$ be the 1-dimensional complex torus corresponding to $\tau = i \in \mathcal{H}$. (i) Write down all hermitian forms $H : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ such that E = Im(H) is integral on the lattice $\Lambda = \mathbb{Z} + \mathbb{Z}i$. Show that the group of all such hermitian forms is canonically isomorphic to \mathbb{Z} and the positive definite ones correspond to $\mathbb{Z}_{>0}$.

(ii) Let H_1 be the hermitian form that corresponds to $1 \in \mathbb{Z}$. Describe all $\alpha : \Lambda \to \mathbb{C}_1 = \{z \in \mathbb{Z} : |z| = 1\}$ such that

$$\alpha(\lambda_1 + \lambda_2) = e^{i\pi E_1(\lambda_1, \lambda_2)} \alpha(\lambda_1) \alpha(\lambda_2),$$

where $E_1 = \operatorname{Im}(H_1)$.

(iii) Let α_1 be one of the above α 's with $\alpha_1(1) = \alpha_1(i) = 1$ and $\mathscr{L} = \mathscr{L}(H_1, \alpha_1)$ be the line bundle associated to (H_1, α_1) as in the Theorem of Appell–Humbert. Show that $\mathrm{H}^0(X, \mathscr{L})$ is one dimensional.

(iv) Show that the endomorphism algebra $\operatorname{End}(X)$ is naturally isomorphic to $\mathbb{Z}[i]$.

(v) Let $\varphi \in \text{End}(X)$ correspond to $a+bi \in \mathbb{Z}[i]$. If we write $\varphi^* \mathscr{L}$ as $\mathscr{L}(H, \alpha)$, give explicit expressions (in terms of a, b and α_1) for H and α .

CAMBRIDGE

3

Let k be an algebraically closed field of characteristic 0. Let A, B be abelian varieties defined over k. For any $f, g \in \text{Hom}(A, B)$ and a line bundle \mathscr{L} on B, we define

$$D_{\mathscr{L}}(f,g) = (f+g)^* \mathscr{L} \otimes f^* \mathscr{L}^{-1} \otimes g^* \mathscr{L}^{-1}.$$

(i) Show that the map $D_{\mathscr{L}}$: Hom $(A, B) \times$ Hom $(A, B) \rightarrow$ Pic(X) is symmetric and bilinear. You may use the theorem of the cube.

(ii) Show that $D_{\mathscr{L}}(f,g) = (f, \phi_{\mathscr{L}} \circ g)^*(\mathscr{P}_B)$, where \mathscr{P}_B is the Poincaré line bundle on $B \times \hat{B}$.

(iii) Show that the map $D_{\mathscr{L}}$ only depends on the class of \mathscr{L} in $NS(B) = Pic(B)/Pic^{0}(B)$. (iv) Show that $\phi_{D_{\mathscr{L}}(f,g)} = \hat{f} \circ \phi_{\mathscr{L}} \circ g + \hat{g} \circ \phi_{\mathscr{L}} \circ f$.

$\mathbf{4}$

Let X/k be an abelian variety defined over an algebraically closed field k. This question studies the subgroup of X generated by the differences of points on a curve $C \subset X$.

(i) Let T be a variety and C a smooth projective curve. Given any line bundle \mathscr{M} on $C \times T$, show that the degree deg $(\mathscr{M}|_{C \times \{t\}})$ does not depend on the point $t \in T$. [Hint: use the upper semi-continuity theorem.]

(ii) Let $\varphi : C \hookrightarrow X$ be a smooth projective curve on X and \mathscr{L} a line bundle on X. Show that the degree of $\varphi^* T_x^* \mathscr{L}$ is independent of $x \in X$.

(iii) Let $D \subset X$ be an irreducible divisor that does not meet C. Show that $T^*_{x_1-x_2}D = D$ for all $x_1, x_2 \in C$.

(iv) Set $\mathscr{L} = \mathcal{O}_X(D)$. Let $Y \subset X$ be the closure of the subgroup generated by $\{x_1 - x_2 : x_1, x_2 \in C\}$. Show that $Y \subset K(\mathscr{L}) = \{x \in X : T_x^* \mathscr{L} \cong \mathscr{L}\}$.

(v) Show that Y = X if and only if C meets all irreducible divisors $D \subset X$. [You may assume the following fact: if $Y \subset X$ is a Zariski closed abelian subgroup, then there is a morphism $f: X \to Z$ such that Y is one of the fibers.]

CAMBRIDGE

 $\mathbf{5}$

In this question, we work over the field \mathbb{C} of complex numbers. Let $C_1, C_2 \subset \mathbb{P}^2$ be two smooth curves of degree 2 (they are also called conics). Assume that C_1 and C_2 meet in 4 distinct points.

(i) Show that the space of lines on \mathbb{P}^2 , denoted by $(\mathbb{P}^2)^{\vee}$, is again isomorphic to \mathbb{P}^2 .

(ii) Let $C_1^{\vee} \subset (\mathbb{P}^2)^{\vee}$ denote the space of lines tangent to C_1 . Show that C_1^{\vee} is again a conic.

(iii) Let $E \subset C_1^{\vee} \times C_2$ consist of all the pairs (l, x) such that $x \in l \subset \mathbb{P}^2$. Show that $E \to C_2$ is a double cover ramified at 4 points. Conclude that E is a smooth curve of genus 1.

(iv) Given $(l_0, x_0) \in E$, then l_0 intersects C_2 in a second point x_1 (the first point is x_0). Through this x_0 , there is a second line l_1 tangent to C_1 (the first tangent line is l_0). Hence we get a point $(l_1, x_1) \in E$. Replace (l_0, x_0) by (l_1, x_1) and repeat the above construction. In this way, we get a sequence

$$S_{l_0,x_0}$$
: { $(l_0,x_0), (l_1,x_1), (l_2,x_2), \ldots$ }

Assume that S_{l_0,x_0} is periodic for some initial point (l_0,x_0) . Show that $S_{l,x}$ is periodic for all initial points $(l,x) \in E$. [You may assume any standard results about morphisms between genus 1 curves, as long as they are clearly stated.]

END OF PAPER