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Let X be a smooth vector field on a manifold M .

1. Define what it means for a smooth curve γ : (−ǫ, ǫ) →M to be an integral curve of
X and

2. Define what is meant by the flow {φt} of X.

State and prove a uniqueness result for integral curves of X that pass through a
given point p ∈M . Using this, or otherwise, show that if φt is the flow of X then

φt+s = φt ◦ φs

whenever both sides are defined. [Standard results from the theory of Ordinary Differential
Equations may be assumed without proof.]

Now suppose that Y is another smooth vector field with flow ψs and that the flows
of X and Y commute (i.e. φt ◦ ψs = ψs ◦ φt whenever both sides are defined). Show that

(Dqφt)(Yq) = Yφt(q) for all q ∈M. (1)

Finally suppose that in addition to the flows commuting, the vector fields X and
Y are pointwise linearly independent. Prove that given any point p ∈ M there exists a
two dimensional submanifold S ⊂ M containing p such that if γ is any curve in M with
γ(0) = p and so γ̇(t) lies in the plane spanned by Xγ(t) and Yγ(t) for all t, then γ(t) ∈ S

for all t [Results from lectures may be assumed if stated clearly.]
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1. Let M be a smooth manifold. Define the space Ωp(M) of smooth p-forms and give
the defining properties of the exterior derivative map d : Ωp(M) → Ωp+1(M). Prove
that such a d exists and is unique.

2. Prove that if ω ∈ Ω1(M) then

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ])

for all X,Y ∈ Vect(M).

3. Now let W be the space of linear maps α : Vect(M) → C∞(M) such that if Xp = 0
then α(X)(p) = 0. Prove there exists a natural isomorphism θ : Ω1(M) → W with
the property that θ(gα) = gα for all g ∈ C∞(M).

4. Suppose H1
deRham(M) = 0 and let α ∈ W be given. Show that there exists

a g ∈ C∞(M) such that α(X) = X(g) for all X ∈ Vect(M) if and only if
Xα(Y )− Y α(X) − α([X,Y ]) = 0 for all X,Y ∈ Vect(M).

3

Define what is meant by the Lie algebra g of a Lie group G, and determine g when
G = GLn(R).

Show that for any Lie group G there is a vector space isomorphism between g and
the space of left invariant vector fields on G.

Now suppose H is another Lie group with Lie algebra h and F : G → H is a
homomorphism of Lie groups. Show how F induces a morphism F∗ : g → h and prove this
is a Lie algebra morphism.

Let expG : g → G be the exponential map for G (defined using the flow along
invariant vector fields) and similarly expH be the exponential map for H. Prove that
F ◦ expG = expH ◦F∗.

Using this, or otherwise, prove that if A is any real n× n matrix then

det exp(A) = etrace(A)

[If you use a specific expression for the exponential map you are expected to prove it].
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Define what is meant by a connection on a vector bundle E. Prove that E

admits a connection, and that the space of connections is (non-canonically) isomorphic to
Ω1(End(E)).

Now suppose that ∇ is a linear connection on a manifold M (i.e. a connection on
TM). Define a map τ : Vect(M)×Vect(M) → Vect(M) by

τ(X,Y ) = ∇XY −∇YX − [X,Y ].

Show that τ is tensorial (i.e. it is induced by a certain tensor on M whose type you should
determine explicitly).

Let {e1, . . . , en} be a local frame for TM over some open set U . Show that there
exist unique 1-forms ωij on U such that

∇Xei =
∑

j

ωij(X)ej

for all i and all X ∈ Vect(M).

Finally let φi be the frame for T ∗M over U that is dual to ei (i.e. φi(ej) = δij).
Prove that

dφj =
∑

i

φi ∧ ωij + τj

where
τ(X,Y ) =

∑

j

τj(X,Y )ej .

Part III, Paper 17



5

5

1. Let M be a manifold with a Riemannian metric g. Given a σ ∈ C∞(M) show that
there exists a vector field Vσ on M that satisfies

g(Vσ, Y ) = Y (σ) for all Y ∈ Vect(M).

Show also that if
g̃(X,Y ) = e2σg(X,Y )

then g̃ is a well-defined Riemannian metric on M .

2. State the defining properties of the Levi-Civita connection. Denoting the Levi-Civita
connection of g (resp. g̃) by ∇ (resp. ∇̃), prove that

∇̃XY = ∇XY +X(σ)Y + Y (σ)X − g(X,Y )Vσ

where g̃ is as in the first part of the question. Hence or otherwise prove that if M
is compact then there exists a point p ∈ M such that ∇̃XY |p = ∇XY |p for all X
and Y .

END OF PAPER
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