MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2012 $\,$ 1:30 pm to 4:30 pm

PAPER 17

DIFFERENTIAL GEOMETRY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

 $\mathbf{1}$

Let X be a smooth vector field on a manifold M.

- 1. Define what it means for a smooth curve $\gamma \colon (-\epsilon, \epsilon) \to M$ to be an *integral curve* of X and
- 2. Define what is meant by the flow $\{\phi_t\}$ of X.

State and prove a uniqueness result for integral curves of X that pass through a given point $p \in M$. Using this, or otherwise, show that if ϕ_t is the flow of X then

$$\phi_{t+s} = \phi_t \circ \phi_s$$

whenever both sides are defined. [Standard results from the theory of Ordinary Differential Equations may be assumed without proof.]

Now suppose that Y is another smooth vector field with flow ψ_s and that the flows of X and Y commute (i.e. $\phi_t \circ \psi_s = \psi_s \circ \phi_t$ whenever both sides are defined). Show that

$$(D_q\phi_t)(Y_q) = Y_{\phi_t(q)} \quad \text{for all } q \in M.$$
(1)

Finally suppose that in addition to the flows commuting, the vector fields X and Y are pointwise linearly independent. Prove that given any point $p \in M$ there exists a two dimensional submanifold $S \subset M$ containing p such that if γ is any curve in M with $\gamma(0) = p$ and so $\dot{\gamma}(t)$ lies in the plane spanned by $X_{\gamma(t)}$ and $Y_{\gamma(t)}$ for all t, then $\gamma(t) \in S$ for all t [Results from lectures may be assumed if stated clearly.]

 $\mathbf{2}$

- 1. Let M be a smooth manifold. Define the space $\Omega^p(M)$ of smooth p-forms and give the defining properties of the exterior derivative map $d: \Omega^p(M) \to \Omega^{p+1}(M)$. Prove that such a d exists and is unique.
- 2. Prove that if $\omega \in \Omega^1(M)$ then

$$d\omega(X,Y) = X\omega(Y) - Y\omega(X) - \omega([X,Y])$$

for all $X, Y \in \text{Vect}(M)$.

- 3. Now let W be the space of linear maps α : Vect $(M) \to C^{\infty}(M)$ such that if $X_p = 0$ then $\alpha(X)(p) = 0$. Prove there exists a natural isomorphism $\theta \colon \Omega^1(M) \to W$ with the property that $\theta(g\alpha) = g\alpha$ for all $g \in C^{\infty}(M)$.
- 4. Suppose $H^1_{\text{deRham}}(M) = 0$ and let $\alpha \in W$ be given. Show that there exists a $g \in C^{\infty}(M)$ such that $\alpha(X) = X(g)$ for all $X \in \text{Vect}(M)$ if and only if $X\alpha(Y) - Y\alpha(X) - \alpha([X,Y]) = 0$ for all $X, Y \in \text{Vect}(M)$.

3

Define what is meant by the Lie algebra \mathfrak{g} of a Lie group G, and determine \mathfrak{g} when $G = GL_n(\mathbb{R})$.

Show that for any Lie group G there is a vector space isomorphism between \mathfrak{g} and the space of left invariant vector fields on G.

Now suppose H is another Lie group with Lie algebra \mathfrak{h} and $F: G \to H$ is a homomorphism of Lie groups. Show how F induces a morphism $F_*: \mathfrak{g} \to \mathfrak{h}$ and prove this is a Lie algebra morphism.

Let $\exp_G: \mathfrak{g} \to G$ be the exponential map for G (defined using the flow along invariant vector fields) and similarly \exp_H be the exponential map for H. Prove that $F \circ \exp_G = \exp_H \circ F_*$.

Using this, or otherwise, prove that if A is any real $n \times n$ matrix then

$$\det \exp(A) = e^{\operatorname{trace}(A)}$$

[If you use a specific expression for the exponential map you are expected to prove it].

 $\mathbf{4}$

Define what is meant by a *connection* on a vector bundle E. Prove that E admits a connection, and that the space of connections is (non-canonically) isomorphic to $\Omega^1(End(E))$.

Now suppose that ∇ is a linear connection on a manifold M (i.e. a connection on TM). Define a map $\tau: \operatorname{Vect}(M) \times \operatorname{Vect}(M) \to \operatorname{Vect}(M)$ by

$$\tau(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y].$$

Show that τ is tensorial (i.e. it is induced by a certain tensor on M whose type you should determine explicitly).

Let $\{e_1, \ldots, e_n\}$ be a local frame for TM over some open set U. Show that there exist unique 1-forms ω_{ij} on U such that

$$\nabla_X e_i = \sum_j \omega_{ij}(X) e_j$$

for all i and all $X \in \text{Vect}(M)$.

Finally let ϕ_i be the frame for T^*M over U that is dual to e_i (i.e. $\phi_i(e_j) = \delta_{ij}$). Prove that

$$d\phi_j = \sum_i \phi_i \wedge \omega_{ij} + \tau_j$$

where

$$\tau(X,Y) = \sum_{j} \tau_j(X,Y) e_j.$$

- $\mathbf{5}$
- 1. Let M be a manifold with a Riemannian metric g. Given a $\sigma \in C^{\infty}(M)$ show that there exists a vector field V_{σ} on M that satisfies

$$g(V_{\sigma}, Y) = Y(\sigma)$$
 for all $Y \in \operatorname{Vect}(M)$.

Show also that if

$$\tilde{g}(X,Y) = e^{2\sigma}g(X,Y)$$

then \tilde{g} is a well-defined Riemannian metric on M.

2. State the defining properties of the Levi-Civita connection. Denoting the Levi-Civita connection of g (resp. \tilde{g}) by ∇ (resp. $\tilde{\nabla}$), prove that

$$\tilde{\nabla}_X Y = \nabla_X Y + X(\sigma)Y + Y(\sigma)X - g(X,Y)V_{\sigma}$$

where \tilde{g} is as in the first part of the question. Hence or otherwise prove that if M is compact then there exists a point $p \in M$ such that $\tilde{\nabla}_X Y|_p = \nabla_X Y|_p$ for all X and Y.

END OF PAPER