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1

Define the Ricci curvature Ric and sectional curvature K of a Riemannian manifold
M . Prove the relation

n∑
j=1

Ric(ej , ej) =
∑

i,j=1,...,n
i 6=j

K(ei, ej)

at p ∈ M , where {e1, . . . , en} is an orthonormal basis of TpM . Show also that for each
tangent vector X ∈ TpM , the linear map of TpM given by v 7→ Rp(X, v)X (where R is
the curvature tensor) is self-adjoint.

State the Bonnet–Myers diameter theorem.

What is a left-invariant metric on a Lie group? Show that if G is a compact Lie
group with bi-invariant (i.e. left- and right-invariant) metric and the centre of the Lie
algebra of G is trivial, then the fundamental group of G is finite.

[Standard properties of the Riemann curvature tensor may be assumed if clearly stated.
You may assume that the Levi–Civita connection of a bi-invariant metric satisfies
∇XY = 1

2 [X,Y ], for all left-invariant vector fields X,Y .]

2

LetM be a Riemannian manifold. Give a definition of a Jacobi field along a geodesic
curve on M .

Show that for every Jacobi field J along a geodesic γ : [0, 1] → M there exists a
smooth map f(t, s) of [0, 1]× (−ε, ε) into M such that for any fixed s ∈ (−ε, ε), the curve

γs(t) = f(t, s) is a geodesic, γ0(t) = γ(t) and J(t) =
∂f

∂s
(t, 0). Deduce from this result a

general formula for Jacobi fields J along γ such that J(0) = 0.

Define what is meant by the points p = γ(0) and q = γ(L) being conjugate along a
geodesic γ. By considering the square length of a Jacobi field |J(t)|2, or otherwise, show
that if the sectional curvature is non-positive at each point of γ, then γ has no conjugate
points.

[Standard properties of covariant derivative along curves may be assumed if clearly stated.]
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3

Define the distance function d induced by the metric on a connected Riemannian
manifold. What is a geodesically complete manifold? State the Hopf–Rinow theorem.

Recall that a Riemannian manifold M is said to be homogeneous if given any two
points p and q inM , there exists an isometry ofM taking p to q. Show that a homogeneous
Riemannian manifold is complete.

We say that a connected Riemannian manifold M is two-point homogeneous if for
each p1, p2, q1, q2 ∈ M , such that d(p1, p2) = d(q1, q2), there exists an isometry f of M
such that f(pi) = qi for i = 1, 2. Show that M is two-point homogeneous if and only if for
each p, q ∈ M and unit vectors u ∈ TpM , v ∈ TqM there exists an isometry f of M such
that f(p) = q and dfp(u) = v.

[The Gauss lemma may be assumed.]

4

For an oriented Riemannian manifold (M,g), define the volume form ωg, the Hodge
∗-operator, and the Laplace–Beltrami operator. State the Hodge decomposition theorem
for the space of p-forms.

Explain briefly how a connection on the tangent bundle TM induces a connection
on the bundle of differential p-forms on M . Show that the volume form ωg is parallel, i.e.
∇ωg = 0, where ∇ is induced by the Levi–Civita connection of g.

Let M be a compact oriented Riemannian manifold and Hp the space of harmonic
differential p-forms on M . Show that every linear function f : Hp → R (0 6 p 6 dimM)
may be expressed as

f(ϕ) =

∫
M

ϕ ∧ ψ

for some (n−p)-form ψ. Is the form ψ uniquely determined? If not, what is the ambiguity
of choosing ψ? Justify your answer.

[You may assume that the formal adjoint of the exterior derivative d on p-forms, p > 0, is
given by (−1)n(p−1)+1∗d∗.]
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5

Define the divergence of a vector field on a Riemannian manifold. Let (M,g) be
a compact oriented Riemannian manifold and ωg the volume form of g. Given a 1-form
θ on M define the vector field Xθ dual to θ with respect to the metric g and prove the
identity δθ = − divXθ, where δ is the formal adjoint of the exterior derivative.

[You may assume that for each vector field X on M the form (divX)ωg is exact.]

State the Bochner–Weitzenböck formula for 1-forms, explaining carefully all the
terms that appear in it.

Suppose that a compact connected Riemannian manifold M has Ric > 0 at each
point. Show that the dimension of the space of harmonic 1-forms on M is not greater
than dimM .

END OF PAPER
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