

### MATHEMATICAL TRIPOS Part III

Friday, 8 June, 2012 1:30 pm to 4:30 pm

## PAPER 14

## **RIEMANNIAN GEOMETRY**

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

## CAMBRIDGE

1

Define the *Ricci curvature* Ric and *sectional curvature* K of a Riemannian manifold M. Prove the relation

$$\sum_{j=1}^{n} \operatorname{Ric}(e_j, e_j) = \sum_{\substack{i,j=1,\dots,n\\i\neq j}} K(e_i, e_j)$$

at  $p \in M$ , where  $\{e_1, \ldots, e_n\}$  is an orthonormal basis of  $T_pM$ . Show also that for each tangent vector  $X \in T_pM$ , the linear map of  $T_pM$  given by  $v \mapsto R_p(X, v)X$  (where R is the curvature tensor) is self-adjoint.

State the Bonnet–Myers diameter theorem.

What is a left-invariant metric on a Lie group? Show that if G is a compact Lie group with bi-invariant (i.e. left- and right-invariant) metric and the centre of the Lie algebra of G is trivial, then the fundamental group of G is finite.

[Standard properties of the Riemann curvature tensor may be assumed if clearly stated. You may assume that the Levi–Civita connection of a bi-invariant metric satisfies  $\nabla_X Y = \frac{1}{2}[X, Y]$ , for all left-invariant vector fields X, Y.]

 $\mathbf{2}$ 

Let M be a Riemannian manifold. Give a definition of a *Jacobi field* along a geodesic curve on M.

Show that for every Jacobi field J along a geodesic  $\gamma : [0,1] \to M$  there exists a smooth map f(t,s) of  $[0,1] \times (-\varepsilon,\varepsilon)$  into M such that for any fixed  $s \in (-\varepsilon,\varepsilon)$ , the curve  $\gamma_s(t) = f(t,s)$  is a geodesic,  $\gamma_0(t) = \gamma(t)$  and  $J(t) = \frac{\partial f}{\partial s}(t,0)$ . Deduce from this result a general formula for Jacobi fields J along  $\gamma$  such that J(0) = 0.

Define what is meant by the points  $p = \gamma(0)$  and  $q = \gamma(L)$  being *conjugate* along a geodesic  $\gamma$ . By considering the square length of a Jacobi field  $|J(t)|^2$ , or otherwise, show that if the sectional curvature is non-positive at each point of  $\gamma$ , then  $\gamma$  has no conjugate points.

[Standard properties of covariant derivative along curves may be assumed if clearly stated.]

## CAMBRIDGE

3

3

Define the distance function d induced by the metric on a connected Riemannian manifold. What is a geodesically complete manifold? State the Hopf–Rinow theorem.

Recall that a Riemannian manifold M is said to be *homogeneous* if given any two points p and q in M, there exists an isometry of M taking p to q. Show that a homogeneous Riemannian manifold is complete.

We say that a connected Riemannian manifold M is two-point homogeneous if for each  $p_1, p_2, q_1, q_2 \in M$ , such that  $d(p_1, p_2) = d(q_1, q_2)$ , there exists an isometry f of Msuch that  $f(p_i) = q_i$  for i = 1, 2. Show that M is two-point homogeneous if and only if for each  $p, q \in M$  and unit vectors  $u \in T_pM$ ,  $v \in T_qM$  there exists an isometry f of M such that f(p) = q and  $df_p(u) = v$ .

[The Gauss lemma may be assumed.]

#### $\mathbf{4}$

For an oriented Riemannian manifold (M, g), define the volume form  $\omega_g$ , the Hodge \*-operator, and the Laplace-Beltrami operator. State the Hodge decomposition theorem for the space of p-forms.

Explain briefly how a connection on the tangent bundle TM induces a connection on the bundle of differential *p*-forms on M. Show that the volume form  $\omega_g$  is parallel, i.e.  $\nabla \omega_q = 0$ , where  $\nabla$  is induced by the Levi-Civita connection of g.

Let M be a compact oriented Riemannian manifold and  $\mathcal{H}^p$  the space of harmonic differential p-forms on M. Show that every linear function  $f : \mathcal{H}^p \to \mathbb{R} \ (0 \leq p \leq \dim M)$ may be expressed as

$$f(\varphi) = \int_M \varphi \wedge \psi$$

for some (n-p)-form  $\psi$ . Is the form  $\psi$  uniquely determined? If not, what is the ambiguity of choosing  $\psi$ ? Justify your answer.

[You may assume that the formal adjoint of the exterior derivative d on p-forms, p > 0, is given by  $(-1)^{n(p-1)+1} * d * .$ ]

# UNIVERSITY OF

 $\mathbf{5}$ 

Define the *divergence* of a vector field on a Riemannian manifold. Let (M, g) be a compact oriented Riemannian manifold and  $\omega_g$  the volume form of g. Given a 1-form  $\theta$  on M define the vector field  $X_{\theta}$  dual to  $\theta$  with respect to the metric g and prove the identity  $\delta \theta = -\operatorname{div} X_{\theta}$ , where  $\delta$  is the formal adjoint of the exterior derivative.

[You may assume that for each vector field X on M the form  $(\operatorname{div} X)\omega_g$  is exact.]

State the Bochner–Weitzenböck formula for 1-forms, explaining carefully all the terms that appear in it.

Suppose that a compact connected Riemannian manifold M has Ric  $\geq 0$  at each point. Show that the dimension of the space of harmonic 1-forms on M is not greater than dim M.

### END OF PAPER