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(i) Give the definition of dimension of a quasi-projective algebraic set. State how this
is related to dimension in commutative algebra. Let X be an affine variety of dimension
d and f ∈ k[X] such that ∅ 6= VX(f) 6= X. Let U be a non-empty open subset of X.
Show that dimU = dimX. Next, prove that every irreducible component of VX(f) has
dimension d− 1. [Here you are not allowed to use the fact that dimension is equal to the
transcendence degree of the function field.]

(ii) Let X be an affine variety, 0 6= f ∈ k[X], and Uf := X \ VX(f). Show
that k[Uf ] is isomorphic to the localisation k[X]f as k-algebras. Assume X = A

2
k and

W = X \ {(0, 0)}. Calculate k[W ] and deduce that W is not affine.

(iii) Find an affine variety X of dimension 3 and irreducible closed subsets Y,Z ⊂ X

of dimension 2 such that Y ∩ Z has dimension 0.

2

(i) Give an example (with justifications) of a regular map f : X → Y of quasi-
projective varieties and a point y′ ∈ Y satisfying the following: the fibre Xy is a smooth
affine variety of dimension two for every y 6= y′ but Xy′ is singular, not irreducible and
not affine.

(ii) Assume n,m > 0. Show that Pn
k × P

m
k and P

n+m
k are not isomorphic but they

are birationally isomorphic. [If you argue using class groups, then you should carefully
calculate these groups.]
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(i) Let X = V (F ) ⊂ P
2
k be a projective curve where F is irreducible of degree 3.

Show that X has at most 1 singular point.

(ii) Let k = C and µ = e
π

3
i. Let σ, τ : A2

k → A
2
k be given as σ(a1, a2) = (µa1, µ

−1a2)
and τ(a1, a2) = (−a2, a1) and let G be the subgroup of Aut(A2

k) generated by σ and τ .
Show that G is a finite group and show that the quotient of A2

k by G is isomorphic to
V (p) ⊂ A

3
k for some polynomial p.
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(i) Let X be a normal quasi-projective variety of dimension d. Show that the set of
singular points of X is of dimension at most d− 2.

(ii) Let k = C and X = V (t1t3 − t22) ⊂ A
3
k. Show that X is normal but not smooth.

Next, show that there exist a divisor D and a point x on X such that x ∈ SuppD′ for any
divisor D′ ∼ D.

[For a divisor D =
∑

aiDi with Di distinct prime divisors, recall that SuppD is the
union of those Di with ai 6= 0.]

5

(i) State the Riemann–Roch theorem for curves. Next, give its proof using
cohomology.

(ii) Give an example (with justifications) of a smooth projective variety X such that
cl(X) is not a finitely generated abelian group. [You need to provide the equations that
define X in some projective space.]
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