MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2012 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 13

ALGEBRAIC GEOMETRY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight. Throughout this paper, k denotes an algebraically closed field.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(i) Give the definition of dimension of a quasi-projective algebraic set. State how this is related to dimension in commutative algebra. Let X be an affine variety of dimension d and $f \in k[X]$ such that $\emptyset \neq V_X(f) \neq X$. Let U be a non-empty open subset of X. Show that dim $U = \dim X$. Next, prove that every irreducible component of $V_X(f)$ has dimension d-1. [Here you are not allowed to use the fact that dimension is equal to the transcendence degree of the function field.]

(ii) Let X be an affine variety, $0 \neq f \in k[X]$, and $U_f := X \setminus V_X(f)$. Show that $k[U_f]$ is isomorphic to the localisation $k[X]_f$ as k-algebras. Assume $X = \mathbb{A}_k^2$ and $W = X \setminus \{(0,0)\}$. Calculate k[W] and deduce that W is not affine.

(iii) Find an affine variety X of dimension 3 and irreducible closed subsets $Y, Z \subset X$ of dimension 2 such that $Y \cap Z$ has dimension 0.

$\mathbf{2}$

(i) Give an example (with justifications) of a regular map $f: X \to Y$ of quasiprojective varieties and a point $y' \in Y$ satisfying the following: the fibre X_y is a smooth affine variety of dimension two for every $y \neq y'$ but $X_{y'}$ is singular, not irreducible and not affine.

(ii) Assume n, m > 0. Show that $\mathbb{P}_k^n \times \mathbb{P}_k^m$ and \mathbb{P}_k^{n+m} are not isomorphic but they are birationally isomorphic. [If you argue using class groups, then you should carefully calculate these groups.]

3

(i) Let $X = V(F) \subset \mathbb{P}^2_k$ be a projective curve where F is irreducible of degree 3. Show that X has at most 1 singular point.

(ii) Let $k = \mathbb{C}$ and $\mu = e^{\frac{\pi}{3}i}$. Let $\sigma, \tau \colon \mathbb{A}_k^2 \to \mathbb{A}_k^2$ be given as $\sigma(a_1, a_2) = (\mu a_1, \mu^{-1}a_2)$ and $\tau(a_1, a_2) = (-a_2, a_1)$ and let G be the subgroup of $\operatorname{Aut}(\mathbb{A}_k^2)$ generated by σ and τ . Show that G is a finite group and show that the quotient of \mathbb{A}_k^2 by G is isomorphic to $V(p) \subset \mathbb{A}_k^3$ for some polynomial p.

UNIVERSITY OF

4

(i) Let X be a normal quasi-projective variety of dimension d. Show that the set of singular points of X is of dimension at most d - 2.

(ii) Let $k = \mathbb{C}$ and $X = V(t_1t_3 - t_2^2) \subset \mathbb{A}^3_k$. Show that X is normal but not smooth. Next, show that there exist a divisor D and a point x on X such that $x \in \text{Supp}D'$ for any divisor $D' \sim D$.

[For a divisor $D = \sum a_i D_i$ with D_i distinct prime divisors, recall that SuppD is the union of those D_i with $a_i \neq 0$.]

$\mathbf{5}$

(i) State the Riemann–Roch theorem for curves. Next, give its proof using cohomology.

(ii) Give an example (with justifications) of a smooth projective variety X such that cl(X) is not a finitely generated abelian group. [You need to provide the equations that define X in some projective space.]

END OF PAPER