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1

Define what is meant by a flat d-dimensional torus. For such a torus describe its
spectrum for the Laplacian acting on smooth functions and prove that it is what you say
it is.

Prove that isospectral flat two-dimensional tori are isometric.

[You may use results from analysis and lattice theory without proof.]

2

State and prove the transplantation theorem for eigenfunctions of the Laplacians
between manifolds constructed from copies of a Euclidean domain by identifying various
pairs of boundary faces of those domains.

Construct, with proof, a pair of isospectral surfaces with boundary, one of which
is connected with a uniform boundary condition and the other of which comprises two
components one of which has uniform, and the other mixed, boundary conditions.

3

Define the heat kernel for a compact Riemannian manifold N . If U is a group of
isometries acting freely on N and M = U \N is the quotient manifold with the induced
metric, obtain an expression for the heat kernel of M in terms of that of N .

Derive an expression for the heat trace of M and deduce Sunada’s theorem
concerning isospectral quotients of N .

4

Given a finitely presented group T , show how to construct a manifoldN of dimension
d > 3 with T acting as a group of isometries without fixed points.

Assuming that T has Gassman equivalent subgroups U1 and U2, construct isospec-
tral manifolds covered by N that are not homeomorphic.

For any n ∈ N construct 2n isospectral manifolds no two of which are isometric.

Part III, Paper 12



3

5

Let T be a finite group generated by two of its elements A,B. Describe how to
construct a Riemann surface N on which T acts by isometries.

Identify χ(N) and the non-trivial stabilisers of the action in terms of appropriate
properties of A, B and T .

A certain group T has Gassman equivalent subgroups U1 and U2 of order 8 and is
generated by elements A,B with the following permutation representation, which may be
assumed faithful, on the cosets of Ui: A acts as (1 2 3)(4 5 6)(7 8 9)(10 11 12) on the
cosets of each of U1 and U2; B acts as (1 4 10)(2 7 6)(3 8 9)(5 11 12) on the cosets of U1

and as (1 4 10)(2 7 6)(5 8 9)(3 11 12) on the cosets of U2. Use these data to construct
isospectral Riemann surfaces. Are they isometric? What is their genus?
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