

MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2012 $\,$ 9:00 am to 11:00 am $\,$

PAPER 11

COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Define the shadow $\partial \mathcal{A}$ of an r-uniform family $\mathcal{A} \subset [N]^{(r)}$, and state the Kruskal– Katona theorem.

Prove that, if $|\mathcal{A}| = {x \choose r}$ where $x \in \mathbb{R}$ and x > r - 1, then $|\partial \mathcal{A}| \ge {x \choose r-1}$.

A graph G on n vertices and m edges can be viewed as $G \in E^{(m)}$ where $E = [n]^{(2)}$. There are $\binom{N}{m}$ such graphs, where $N = |E| = \binom{n}{2}$. Let $\mathcal{G}_m \subset E^{(m)}$ be the family of those graphs having m edges and containing no triangle. Define x_m by $|\mathcal{G}_m| = \binom{x_m}{m}$, where $x_m \ge m-1$. Define $p_m = |\mathcal{G}_m|/|E^{(m)}| = |\mathcal{G}_m|/\binom{N}{m}$.

Prove that

$$\frac{p_{m+1}}{p_m} \leqslant \frac{x_m - m}{N - m} \,.$$

Infer that

$$p_{m+k} \leqslant p_m \prod_{i=0}^{k-1} \frac{x_m - i}{N - i}$$

and hence that if $p_m \leq \frac{1}{2}$ then $p_{2m} \leq \frac{1}{4}$.

$\mathbf{2}$

Let p be prime and let $0 \leq l_1 < l_2 < \cdots < l_s$. Let $\mathcal{A} \subset \mathcal{P}[n]$ be such that, for $1 \leq i \leq s$, there is no $A \in \mathcal{A}$ with $|A| \equiv l_i \pmod{p}$, but for all distinct $A, B \in \mathcal{A}$, $|A \cap B| \equiv l_i \pmod{p}$ for some i.

Show that $|\mathcal{A}| \leq \sum_{i=0}^{s} {n \choose i}$. Show further that, if there is some r with $|\mathcal{A}| \equiv r \pmod{p}$ for all $A \in \mathcal{A}$ and $r \not\equiv j \pmod{p}$ for $0 \leq j < s$, then $|\mathcal{A}| \leq {n \choose s}$.

In the latter case, give an example to show that $|\mathcal{A}| > \binom{n}{s}$ is possible if the condition $r \not\equiv j \pmod{p}$ for $0 \leq j < s$ be dropped.

3

Define the vertex boundary $B(\mathcal{A})$ of a subset $\mathcal{A} \subset \mathcal{P}[n]$.

State and prove Harper's inequality for the minimum size of the vertex boundary. [You may assume, if you wish to, the Kruskal–Katona theorem.]

For $i, j \in [n]$ let C_{ij} be the usual compression operator. Is it true that, if $\mathcal{A} \subset [n]^{(r)}$, then $|B(C_{ij}\mathcal{A})| \leq |B(\mathcal{A})|$?

UNIVERSITY OF

 $\mathbf{4}$

Let $n \equiv 0 \pmod{4}$ and let $\mathcal{A} \subset \mathcal{P}[n]$ satisfy $|A \cap B| \neq n/4$ for all $A, B \in \mathcal{A}$. Prove that $|\mathcal{A}| \leq 1.999^n$. [You may assume that $\sum_{j \leq \gamma n} {n \choose j} \leq 2^{H(\gamma)n}$ for $0 \leq \gamma \leq 1/2$. You may also assume Harper's inequality.]

Suppose now that \mathcal{A} satisfies $|A \cap B| \neq \ell$ for all $A, B \in \mathcal{A}$. Indicate how to modify your proof to show $|\mathcal{A}| \leq 1.999^n$ if $\ell = \lfloor n/8 \rfloor$.

If $\ell = \lfloor 2n/3 \rfloor$, must $|\mathcal{A}| \leq 1.999^n$ still hold?

END OF PAPER