

MATHEMATICAL TRIPOS Part III

Thursday, 31 May, 2012 9:00 am to 11:00 am

PAPER 10

RAMSEY THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

State and prove the Hales–Jewett theorem, and deduce van der Waerden's theorem. Prove the strengthened van der Waerden theorem.

Is the following strengthening of the Hales–Jewett theorem true or false: for any m and k there exist n and d such that whenever $[m]^n$ is k-coloured there exists a monochromatic line whose active coordinate set has size d?

$\mathbf{2}$

Show that if a_1, \ldots, a_n are non-zero rationals then the matrix (a_1, \ldots, a_n) is partition regular if and only if some (non-empty) subset of the a_i has sum zero.

[You may assume van der Waerden's theorem. No form of Rado's theorem may be assumed without proof.]

For an $m \times n$ matrix A, and a subset S of the positive integers, we say that A is partition regular over S if whenever S is finitely coloured there exists a vector $x \in S^n$, with all its entries having the same colour, such that Ax = 0.

(i) Show that if a_1, \ldots, a_n are non-zero rationals then the matrix (a_1, \ldots, a_n) is partition regular over the set of even positive integers if and only if it is partition regular.

(ii) Show that if a_1, \ldots, a_n are non-zero rationals then the matrix (a_1, \ldots, a_n) is partition regular over the set of odd positive integers if and only if the sum of all the a_i is zero.

3

Prove that there exists an idempotent ultrafilter in $\beta \mathbb{N}$.

[You may assume that $\beta \mathbb{N}$ is a (non-empty) compact Hausdorff space, and that the operation + on $\beta \mathbb{N}$ is associative and left-continuous.]

Deduce Hindman's theorem.

[You may assume simple properties of ultrafilters and their quantifiers.]

(i) Does there exist an idempotent ultrafilter that has as a member the set $\{x \in \mathbb{N} : x \text{ is not a multiple of } 10\}$?

(ii) Does there exist an idempotent ultrafilter that has as a member the set $\{x \in \mathbb{N} : x \text{ is not a power of } 10\}$?

CAMBRIDGE

 $\mathbf{4}$

What does it mean to say that a subset of $\mathbb{N}^{(\omega)}$ is *completely Ramsey*? Define the *-topology on $\mathbb{N}^{(\omega)}$, and explain what it means for a subset of $\mathbb{N}^{(\omega)}$ to be *-*Baire*.

Give an example of a set that is not Ramsey, and also an example of a set that is Ramsey but not completely Ramsey.

Prove that a subset of $\mathbb{N}^{(\omega)}$ is completely Ramsey if and only if it is *-Baire.

[You may assume that every *-open set is completely Ramsey.]

Is $\mathbb{N}^{(\omega)}$ *-meagre? Is it τ -meagre? Justify your answers.

END OF PAPER