MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2012 1:30 pm to 4:30 pm

PAPER 1

LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let L be a finite dimensional Lie algebra.

Define the adjoint map $ad_x: L \longrightarrow L$ for x in L.

Define what is meant by L being nilpotent.

Show that L is nilpotent if and only if ad_x is nilpotent for all x in L.

 $\mathbf{2}$

$\mathbf{2}$

Define what is meant by a Lie algebra L being soluble.

Show that all two dimensional complex Lie algebras are soluble.

Prove that all irreducible representations of a finite dimensional complex soluble Lie algebra are one dimensional.

3

Define what is meant by a finite dimensional complex Lie algebra L being semisimple.

Define the Killing form B_L and show that it is non-degenerate.

Define what is meant by a Cartan subalgebra H of L.

Show that the restriction of B_L to any Cartan subalgebra H of L is also nondegenerate.

$\mathbf{4}$

Define what is meant by a representation of a Lie algebra being completely reducible.

Show that all finite dimensional representations of a semisimple finite dimensional complex Lie algebra are completely reducible.

UNIVERSITY OF

 $\mathbf{5}$

State the classification of weighted Dynkin diagrams of irreducible root systems.

Define what is meant by a base Δ of a root system Φ and define the Cartan matrix of Φ with respect to Δ .

Define the Weyl group of Φ .

For the root system of type C_3 construct the corresponding semisimple complex Lie algebra. Describe its Weyl group. Sketch the root system showing the Weyl chambers.

6

Let L be a semisimple finite dimensional complex Lie algebra with Cartan subalgebra H.

Define what is meant by a primitive element of weight ω where ω lies in H^* .

Show that for each ω in H^* there is an irreducible representation with a primitive element of weight ω .

Define the fundamental weights of L. Describe them in the case of sl_3 .

END OF PAPER