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This question is concerned with various properties of the linear transport equation.

(a) State the Newton laws for N particles with interaction binary potential and some
external potential.

(b) Write the Hamiltonian form of the previous equations.

(c) Define the associated transport equation and its characteristics curves (still in
Hamiltonian form). We assume that all these equations have smooth unique global
solutions for given smooth initial data.

(d) Prove that (using the general Hamiltonian form) the application St : (x, v) →
(X(t, x, v), V (t, x, v)) (where X(t, x, v) and V (t, x, v) are solutions at time t of the
ODE system starting from x, v) has Jacobian equal to 1 for all times.

(e) Give two proofs of the conservation of Lp norms along time for the solutions to the
transport equation, for p ∈ [1,+∞) (one proof should use characteristics and the
previous item (d), the other one should not use characteristics).

(f) Consider the two-dimensional vortices incompressible Euler equation:

∂tω + u · ∇xω = 0, ω = ω(t, x) ∈ R, x ∈ R
2, u := ∇⊥

x∆
−1
x ω

with some initial conditions ωin ∈ C1(R× R
2,R) and where

∇⊥
x φ = (−∂x2

φ, ∂x1
φ).

Prove formally (i.e. assuming existence of smooth solutions and that all integration
by parts are justified) the conservation of Lp norms along time for p ∈ [1,+∞).

(g) We now want to prove some growth criterion on the force field in order to ensure
global existence for the transport equation. Let us start with an ODE result.
Consider F ∈ C1(R× R

d;R) (d ∈ N) and the ODE

y′(t) = F (t, y), t > 0, y ∈ R
d

with initial condition y(0) = y0 at time t = 0. Consider the maximal time of
existence Tc ∈ (0,+∞] given by the Picard-Lindelöf theorem. Prove that if

sup
t→T−

c

|y(t)| < +∞

then Tc = +∞.

(h) Consider a function F ∈ C1(R× R
d × R

d;R) such that

∀x, v ∈ R
d, |F (t, x, v)| 6 C(1 + |x|+ |v|)

for some constant C ∈ (0,+∞). Prove that the transport equation

∂tf + v · ∇xf + F · ∇vf = 0, f = f(t, x, v), x ∈ R, v ∈ R
d

with initial data fin ∈ C1(R ×R
d × R

d;R) has a unique global solution in C1.

(i) Show by producing a counter-example that the conditions assumed on F in the
previous item do not imply that F is uniformly Lipschitz with respect to (x, v) on
R× R

d × R
d.
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We have seen during the lectures how to construct a modified norm of hypocoercivity
for the linear relaxation equation. Let us look at another method of building such a
modified norm of hypocoercivity by using general semigroup arguments, and discuss its
limits.

(a) Recall what is the linear relaxation equation and state the result of hypocoercivity
in the torus for this equation that we have seen in the lecture (you do not need to
state the exact formula for the modified norm).

(b) Prove this result in the case of homogeneous solutions.

(c) Consider a bounded operator L in a Hilbert space H. (The operator defining our
equation is unbounded, but for simplicity we shall perform the semigroup argument
in this simpler setting. It can easily be extended to the linear relaxation equation.)

We shall prove a preliminary result. Assume that the semigroup Tt of L satisfies

∀ f ∈ H, ‖Ttf‖H 6 C eλt‖f‖H (1)

for some C ∈ [1,+∞) and λ ∈ R. Prove that

(A) one can choose C = 1 in (1)

if and only if L satisfies

(B) ∀ f ∈ H, 〈Lf, f〉H 6 λ‖f‖2H .

A hypocoercive situation is when the semigroup satisfies (1) in the ambient norm,
but only with some C > 1.

(d) Assume (1) with C ∈ (1,+∞) and λ < 0 and consider

‖f‖∗ :=
(

η‖f‖2 +
∫ +∞

0
‖Tτf‖2H dτ

)1/2

, η > 0.

Prove that this is well-defined as a Hilbert norm, and that, for any η > 0 this norm
is equivalent to the original norm ‖ · ‖H .

(e) Under the same assumption and for η ∈ (0, η0) where η0 should be computed, prove
that St satisfies, in the modified norm ‖ · ‖∗, the control (1) with C ′ = 1 and
some λ′ to be computed.

(f) Discuss the limits of this general argument as compared to the results and methods of
hypocoercivity we have seen during the lectures (compare assumptions, conclusions,
and the modified norm itself).
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This exercise is concerned with the so-called Fokker-Planck operator. Consider
Φ ∈ C2(Rd,R) and consider the associated operator

Lf := ∇v · (∇vf +Φ(v)f) , f = f(t, v), v ∈ R
d.

We assume that the potential Φ satisfies
∫

Rd

e−Φ(v)dv = 1

as well as

lim
|v|→+∞

(

|∇Φ(v)|2
2

−∆Φ(v)

)

= +∞.

(a) Compute the functions f ∈ C2(Rd;R) ∩W 1,1(Rd) such that
∫

Rd

|f | |∇Φ| dv < +∞

and which cancel the operator L, i.e. Lf = 0.

(b) From now on we assume that f is always sufficiently smooth and sufficiently decaying
at infinity so that integrals and integration by parts all make sense. Prove that

I(f) := −〈Lf, f〉L2(M−1) > 0

where L2(M−1) is the Lebesgue L2 space on R
d with reference measure M−1 with

M(v) := e−Φ(v).

(c) We shall prove that this operator has a spectral gap in the space L2(M−1). In other
words we shall prove a Poincaré inequality for the measure M on R

d. Prove that

I(f) >
1

2

∫

Rd

f2

(

|∇Φ(v)|2
2

−∆Φ(v)

)

M−1dv > λ1

∫

|v|>R
f2M−1dv (1)

for some constant λ1 ∈ (0,+∞) independent of f .

Hint: Plug f =
√
Mg in the formula for I(f).

(d) You can admit the following particular case of the Rellich-Kondrashov Theorem: the
embedding H1(B(0, R)) → L2(B(0, R)) is compact for any R > 0 (meaning that it
maps bounded sets into relatively compact sets), where B(0, R) denotes the usual
euclidean ball with radius R. Prove that

∫

B(0,R)

∣

∣

∣

∣

∇
(

f

M

)
∣

∣

∣

∣

2

Mdv > C

∫

B(0,R)

[

f −
(

∫

B(0,R)
f(v∗)dv∗

)

M(v)

]2

M−1dv

for some constant C ∈ (0,+∞) independent of f .

Hint: Argue by contradiction and suppose that there a sequence hn = fn/M such
that

∀n > 1,

∫

B(0,R)
|∇hn|2 Mdv 6

1

n
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and

∀n > 1,

∫

B(0,R)

[

hn −
(
∫

hnM

)]2

Mdv = 1.

(e) Deduce that

I(f) > λ2

∫

B(0,R)

[

f −
(
∫

Rd

f(v∗)dv∗

)

M(v)

]2

M−1dv − λ3

∫

|v|>R
f2M−1dv (2)

for some constants λ2, λ3 ∈ (0,+∞) independent of f .

(f) By combining (1) and (2), conclude that

I(f) > λ4

∫

Rd

[

f(v)−
(
∫

Rd

f(v∗)dv∗

)

M(v)

]2

M−1dv

for some constant λ4 ∈ (0,+∞) independent of f .

4

Write an essay on the Vlasov-Poisson equation, including a presentation and as
many properties, remarks and proofs as possible.

END OF PAPER
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