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Consider an Oldroyd-B fluid with density ρ, viscosity µ, elastic modulus G and
relaxation time τ , so that

σ = −pI+ 2µE+GA,

DA

Dt
− (∇u)T ·A−A ·∇u+

1

τ
(A− I) = 0.

Show that in a time-dependent but uniform shear flow u = (γ(t)y, 0, 0) the shear stress is
given by

σ12(t) = µγ(t) +G

∫ t

γ(t′)e−(t−t′)/τ dt′.

Now consider the same fluid occupying the half-space above a plate at y = 0
which is oscillating in its own plane with velocity (Re(U0e

iωt), 0, 0). Taking the flow
to be of the form u(y, t) = (Re(U0e

ky+iωt), 0, 0), find an expression for k2. In the limit
1/τ ≪ ω ≪ G/µ, show that there is a decaying elastic wave, with wavelength 2πc/ω where
c2 = G/ρ, and with a rate of exponential decay in space

ω

2c

(

1

ωτ
+

µω

G

)

.

Under what conditions is the Newtonian limit recovered.

2

Consider a Johnson-Segalman fluid in the form

σ = −pI+ 2µE+GA,

DA

Dt
+Ω ·A−A ·Ω− α(E ·A+A · E) +

1

τ
(A− I) = 0,

where E is the symmetric and Ω the antisymmetric part of ∇u, µ, G and τ are positive
constants and |α| < 1.

In steady simple shear u = (γy, 0, 0), show that

A13 = A31 = A23 = A32 = 0, A33 = 1,

A11 = 1 + (1 + α)γτA12, A22 = 1− (1− α)γτA12,

and find A12.

Sketch the viscosity and normal stress differences as functions of the shear rate.

Show that the shear stress σ12 is monotonic in the shear rate γ only if µ > αGτ/8.

[Hint: find the maximum negative slope of x/(1 + x2).]
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A Bingham fluid has yield stress σY and viscosity µ so that in a simple shear flow
with shear rate γ

{

γ = 0 if |σ| 6 σY ,

σ = sign(γ)σY + µγ if |σ| > σY .

A pressure difference ∆p is applied to a long tube of length L and radius a filled
with the above Bingham fluid. Use a force balance to explain why the axial component of
the steady momentum equation takes the form

0 = −
dp

dz
+

1

r

∂

∂r
(rσrz) .

Find the volumetric flow rate. Show that

Q = 0 if
∆p

L
<

2σY
a

,

and Q ∼
πa4

8µ

(

∆p

L
−

8σY
3a

)

if
∆p

L
≫

σY
a
.

Now suppose that the tube is held vertically and allowed to drain freely (∆p = 0)
under gravity. Discuss, without detailed calculation, what might be seen after a long time.
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