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A deep layer of lava at its freezing temperature, Tm, loses heat from its upper
surface to air of fixed temperature T∞. The radiative flux of heat from the upper surface
is approximately given by

Fs = ρcpλR(Ts − T∞),

where ρ is the density of the lava, cp is its specific heat capacity, λR is a constant, Ts(t)
is the surface temperature of the lava and t is the time since formation of a solid crust
of thickness a(t). Assume that the thermal field is approximately linear throughout the
crust, and find an algebraic equation for a(t). How does a vary with t at small and large
times?

For very deep lava intrusions the pressure-dependence of the bulk freezing tempera-
ture can lead to further solidification at depth. Consider a pressure (and therefore depth)
dependent freezing temperature of the form

Te(z) = Tm +∆Tmz/H,

where T0 and ∆Tm are constants, z is the vertical depth from the surface, and H is the
initial depth of the intrusion. Assume that the liquid part of the intrusion is well mixed
(of uniform temperature Te(b)) so that a solid basal layer (also of uniform temperature
Te(b)) forms of thickness H − b(t).

For a well-mixed fluid interior the heat flux from the liquid to the crust is given by

Fc = ρcpλc(Te − Tm),

where λc < λR is a constant.

Use conservation of heat (or otherwise) to derive evolution equations for the
thickness of the basal layer and the crust in the limit where the crust remains thin,
a ≪ H. Solve for the thickness of the lower layer explicitly, and provide estimates for the
behaviour of a(t) at small and large times.
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Sunlight of intensity I0 is incident normally on a block of ice of far-field temperature
Tm, which then sublimates (vaporizes) at its surface. You may assume that the surface
temperature is therefore also equal to Tm. The light energy absorbed per unit volume at
distance z below the surface of the ice is

Q = λI0e
−λz,

where λ is a constant. Find the temperature field T (z) in the ice and the rate of sublimation
V . Draw a sketch of T (z) in the case λ ≫ V/κ, where κ is the thermal diffusivity of ice.

Examine the morphological stability of the surface of the ice, ignoring any heat
transfer to the air but taking account of the Gibbs-Thomson relationship

T = Tm − γ∇ · n,

where n is the unit normal to the solid–vapour interface pointing into the vapour, and γ is
a constant that characterises the surface energy. In particular, you should find the growth
rate σ as a function of the wavenumber α of transverse disturbances to the surface of the
ice.

By considering the conditions for marginal equilibrium (σ = 0) or otherwise, show
that in the limit λ ≫ V/κ the interface is morphologically unstable if

I0 >
27

4
kγλ2,

where k is the thermal conductivity of ice.

[Hint: assume that the critical condition occurs when α = O(λ), so that α ≫ V/κ
and justify this assumption from your answer.]
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At sufficiently large undercooling nucleation of crystals can occur predominantly
within the bulk liquid, away from cooled boundaries. Consider a turbulent plume of
water and suspended ice crystals rising vertically along a cooled boundary of temperature
Tb < Tm, where Tm is the bulk melting temperature. The buoyancy of the plume derives
principally from the presence of the ice crystals of density ρi, which is less than the density
of water ρw, which can be assumed constant, independent of temperature. You may assume
that crystal growth is sufficiently rapid to maintain thermodynamic equilibrium in the
plume, which is cooled by the wall and entrains water of far-field temperature T∞ > Tm.

Use an appropriate control-volume approach to derive equations for conservation of
mass and momentum in steady flow, including the drag exerted by the vertical wall and
accounting for the different densities of ice and water. You may assume that the drag
coefficient is independent of the volume fraction φ of ice crystals.

Now assuming that the densities and thermal properties are equal between phases,
show that the expression for conservation of heat in the plume is given by

d

dz
[bw {cp(Tm − T∞)− Lφ}] = cp St w (Tb − Tm),

where z is the vertical coordinate, b the width of the plume, w the mean vertical velocity
within the plume, cp the specific heat capacity, L the latent heat and St the thermal
Stanton number.

Find a similarity solution for the rise of the plume, ignoring the density variations
associated with changes in φ except where they modify the buoyancy.

What is the ice production rate as a function of height within the plume? At what
temperature must the vertical wall be held to maintain the plume?
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A porous medium of uniform permeability Πl is saturated with an aqueous salt
solution and is pulled at constant speed V to colder temperatures through a fixed
temperature gradient G. The solution partially solidifies to form a mushy region of uniform
permeability Πm in −a < z < 0 and a eutectic solid in z < −a. The solution is introduced
at z = h with concentration C0 and vertical component of the Darcy velocity w = −U in
a Cartesian coordinate system (x, z).

Assume that the system has infinite extent in the x direction and determine the
forced Darcy flow (u,w) with u = x f ′(z), where f(z) is to be determined in each medium.
You may neglect the influence of gravity. In particular, show that the vertical velocity in
the unfrozen porous region 0 < z < h is

w = −U
z + a (Πm/Πl)

h+ a (Πm/Πl)

and write down an expression for the vertical component of velocity in the mushy region.

Consider the combined limits aΠm/hΠl ≪ 1, h ≫ D/V , where D is the diffusivity
of salt in solution, and solve for the concentration field C(z) in the unfrozen porous region
using the marginal equilibrium condition at the mush–liquid interface, given the liquidus

TL(C) = −mC,

where m is constant, and the frozen temperature field

T = TE +G(z + a),

where TE is the eutectic temperature. Use this solution to show that the thickness of the
mushy region is

a =
−mC0 − TE

G
−

(

πhD

2U

)

1/2

exp

(

V 2h

2UD

)

erfc

√

V 2h

2UD
.

If V 2h/2UD ≫ 1 and D/V ≪ h then C(0) ≈ C0. With this limit in addition to the
limits above, show that the bulk composition

(1− φ)C = C0 +
Πm

Πl

U

V

G

m

(z + a)2 − a2

2h
,

where φ is the solid fraction of ice, and sketch the trajectory of (C, T ) in the phase diagram.
What is the composition of the composite eutectic solid in z < −a?
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