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Consider a channel with a triangular cross-section with boundaries at y = ±1

2
b(x, z)

where

b(x, z) =

{

B(x)(z −H(x)) z > H(x)
0 otherwise.

Here, x is in the along-channel direction, z is vertically upwards, z = H(x) is the elevation
of the deepest part of the channel and B(x) describes the overall variation in the channel
width. The channel contains water with a free surface at z = H(x) + h(x, t) beneath an
infinite atmosphere. Suppose it is raining so that water is being added to the channel at
a volume flux of R(x) per unit length of the channel independently of the channel width.

(a) What conditions must be satisfied to be able to describe the flow using the
inviscid shallow water approximation? Assuming this approximation and that the rain
water has no net horizontal momentum when it joins the channel, derive the appropriate
continuity equation and show that the momentum equation can be written as

∂u

∂t
+ u

∂u

∂x
+ g

∂

∂x
(H + h) = −2

Ru

Bh2
.

State any additional assumptions that are necessary.

(b) Show that this system is hyperbolic. Determine the characteristics λ and
the ordinary differential equations describing the evolution of the flow along these
characteristics. Write your answer in terms of the long wave speed c rather than depth h.

(c) Define the Froude number F and state what is meant by the terms ‘subcritical’,
‘critical’ and ‘supercritical’ in the context of a hydraulic flow. Assume that we have a
steady flow along the channel with the volume flux at x = 0 given by Q0. Give an
expression for the volume flux Q(x). Determine how the Bernoulli potential J(x) changes
along the channel due to the rainfall, assuming the rain is well mixed throughout the
cross-section but in the absence of any hydraulic jumps or other dissipative processes.

(d) For uniform rain R(x) = R0 in a channel with B(x) = 1 we can model the local
change in Bernoulli potential as J(x) = J0 − βx near x = 0 for some J0 > 0 and β > 0.
Define the specific energy E and determine the slope dH/dx required so that a flow of
depth h0 at x = 0 is critical at x = 0. Express your answer in terms of h0, R0 and β.
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Following an unusual weather event the surface of the ocean has an elevation at
t = 0 given by

z =







0 x < −L
η0 −L 6 x 6 L
0 x > L

The ocean can be treated as an inviscid shallow water flow of homogeneous density with
its bottom located at z = −H + βy. The ocean is at rest at t = 0 relative to the rotating
frame of reference described by constant Coriolis parameter f .

(a) Define a Rossby number Ro appropriate for this ocean. Write down continuity
and momentum equations, treating the ocean as a shallow water flow of local depth h and
velocity (u, v, w). Prove that the potential vorticity,

Π =
ζ + f

h
,

is conserved by a fluid parcel. Here ζ = ∂v/∂x − ∂u/∂y is the relative vertical vorticity.

(b) Simplify the equations of motion in the limit Ro ≪ 1 and linearise Π under the
assumptions η0 ≪ H and β = 0. By writing the local depth as h = H + η, decompose the
horizontal velocity and depth perturbation as

(u, v, η) = (u∞, v∞, η∞) + (u′, v′, η′).

Determine the steady component of the flow, (u∞, v∞, η∞), as t → ∞. What balance
does the Rossby radius of deformation, R = (gH)1/2/f , represent? Sketch the resulting
steady velocity and depth profiles. Derive also the dispersion relation for the transient flow
(u′, v′, η′). Determine the corresponding phase and group velocities as a function of the
wavenumber vector k. You need not solve the transient problem for the initial conditions.

(c) Explain why Rossby waves will be excited if β 6= 0. Determine the dispersion
relation, phase and group velocities for these waves under the assumption that η0 ≪ H
and that β is small. Prove that the initial adjustment of the surface occurs much faster
than the Rossby waves provided βR ≪ H.
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Consider a body of fluid of density ρ0 containing suspended particles of density ρp
and volume concentration φ. The settling speed of the particles in a quiescent fluid is
given by W = W0(1− φ)α for some constant α, where W0 is the settling speed in a dilute
suspension.

(a) Explain why the particle sedimentation rate decreases as the particle concentra-
tion increases. Derive a one-dimensional equation describing the evolution of the particle
concentration in a quiescent fluid. Determine the characteristics λ for this equation. What
quantity is conserved along the characteristics? For the case α = 1, describe the evolution
of the concentration field in a container of depth H where the initial density concentration
is given by φ(z, t = 0) = (1 − z/H)φ0 for constant φ0 < 1. Show that a concentration
shock will form within the container if φ0 >

1

2
and determine the time and height at which

the shock will form.

(b) Suppose there is a source of energy keeping the contents of the container well
mixed with uniform concentration φ(t). Explain why particles that come close to the lower
boundary can still settle out of the flow. Derive an equation for φ(t) and solve this for
α = 1 given that φ(t = 0) = φ0.

(c) Consider a lock-release particle-laden gravity current in a channel of unit width.
The fluid of density ρ0 is of infinite depth above the channel’s flat base, but the fluid
behind the lock of length L0 contains suspended particles with a uniform concentration
φ0 to a depth H. Derive an integral (box) model for the evolution of the current. State
any assumptions made. Solve this model for the run-out length of the current when α = 1
under the assumption that the flow is turbulent and the volume of the current is constant.

(d) Repeat the calculation of part (c) but in an axisymmetric geometry with the
particle-laden fluid initially confined to 0 6 r 6 R and 0 6 z 6 H.
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Inertial-gravity waves of frequency ω are excited in a density stratified basin of depth
H rotating with an angular velocity f/2. The basin is square at the surface with sides
of length L and the stratification of the fluid it contains is characterised by a constant
buoyancy frequency N . The front and back boundaries are vertical. However, the left-
hand boundary makes an angle α to the horizontal and the right-hand boundary makes
an angle β to the horizontal, as shown in the figure below.

a b

q

x = x0

H

L

(a) By linearising the equations of motion, show that the vertical velocity of the
inertial-gravity waves is governed by

[

∂2

∂t2
∇2 +N2

(

∂2

∂x2
+

∂2

∂y2

)

+ f2
∂2

∂z2

]

w = 0

for a Boussinesq system. Determine the dispersion relation for these waves and demon-
strate that the phase and group velocities are perpendicular.

(b) Outline the idea behind the formation of an inertial-gravity wave attractor for
plane waves with the wavenumber vector confined to a plane parallel to the front and
back boundaries of the basin. Consider a parcel of energy propagating at an angle θ to the
vertical. Determine the location x = x4 at which this parcel will reach the top boundary
if it starts propagating down and to the right from a position x = x0 on the top boundary
and reflects from each of the other boundaries exactly once. Determine the location and
focusing power of the corresponding wave attractor. What direction does the energy on
the attractor move around the domain? What happens if α = β?

(c) For α > β, over what range of θ can this simple four-reflection attractor exist?
What restriction must be placed on the aspect ratio H/L?

END OF PAPER
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