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1

Show that any continuous function of two variables f : [0, 1]2 → R can be written
in terms of continuous functions of one variable and addition.

2

Show that the following two statements are equivalent.

(A) If (E, d) is a complete metric space, then E cannot be written as the union of
a countable collection of closed sets with empty interior.

(B) Suppose that X and R are sets with R ⊆ X ×X and such that

{y ∈ X : (x, y) ∈ R} 6= ∅

for all x ∈ X. Then there exists a function G : Z++ → X such that
(

G(n), G(n+1)
)

∈ R

for all n > 1.

3

Define the terms convex set, closed convex hull and extreme point as used in the
statement that every compact convex set in a normed space over R is the convex hull of
its extreme points.

Prove the statement.

State and prove Carathéodory’s lemma about convex sums in R
n.

Consider the space l1(R) of real sequences x with
∑

∞

j=1 |xj | convergent and norm
‖x‖1 =

∑

∞

j=1 |xj |. Find the extreme points of the closed unit ball Σ and show that not
every point of Σ is a finite convex combination of extreme points.

Show that if K is a compact convex set in R
n whose extreme points form a closed

set, then every point in K is in the convex hull of n + 1 of its extreme points. Show by
means of an example that we cannot replace n+ 1 by n.

If K is a compact convex set in R
n, is it true that K is the convex hull of finitely

many extreme points? Give a proof or counterexample.
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4

Define the space of distributions D′(T) and the notion of convergence in distribution.
Define the derivative T ′ of a distribution T showing that is is indeed a distribution.
Characterise the members of D′(T) in terms of their Fourier series.

State and prove a necessary and sufficient condition for a distribution T to be the
derivative of another distribution.

Define the support of a distribution showing that it is well defined object. (You may
use any theorems you wish on partitions of unity provided they are clearly stated.) Show
that if T is a distribution suppT ′ ⊆ suppT and give an example where suppT ′ 6= suppT .

Characterise the distributions whose support is a single point. (If you use any form
of Taylor’s theorem you should prove it.)

Show that given any n > 0 and and ǫ > 0 we can find a g ∈ D such that
supp g ⊆ [−ǫ, ǫ], g(n)(0) = 1 and ‖g(r)(t)| 6 ǫ for all t and all 0 6 r 6 n.

Let δx have its usual meaning and let aj ∈ C [j > 1].

(i) Show that
∑m

j=1 ajδ1/j converges in distribution as m → ∞ if
∑

aj is absolutely
convergent.

(ii) If E is a closed subset of T, is it true that there always exists a distribution T

with suppT = E? Give a proof or counter example.

END OF PAPER

Part III, Paper 7


