MATHEMATICAL TRIPOS Part III

Thursday, 2 June, 2011 1:30 pm to 4:30 pm

PAPER 7

TOPICS IN ANALYSIS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Show that any continuous function of two variables $f:[0,1]^2 \to \mathbb{R}$ can be written in terms of continuous functions of one variable and addition.

$\mathbf{2}$

Show that the following two statements are equivalent.

(A) If (E, d) is a complete metric space, then E cannot be written as the union of a countable collection of closed sets with empty interior.

(B) Suppose that X and R are sets with $R \subseteq X \times X$ and such that

$$\{y \in X : (x, y) \in R\} \neq \emptyset$$

for all $x \in X$. Then there exists a function $G : \mathbb{Z}^{++} \to X$ such that $(G(n), G(n+1)) \in R$ for all $n \ge 1$.

3

Define the terms *convex set*, *closed convex hull* and *extreme point* as used in the statement that every compact convex set in a normed space over \mathbb{R} is the convex hull of its extreme points.

Prove the statement.

State and prove Carathéodory's lemma about convex sums in \mathbb{R}^n .

Consider the space $l^1(\mathbb{R})$ of real sequences \mathbf{x} with $\sum_{j=1}^{\infty} |x_j|$ convergent and norm $\|\mathbf{x}\|_1 = \sum_{j=1}^{\infty} |x_j|$. Find the extreme points of the closed unit ball Σ and show that not every point of Σ is a finite convex combination of extreme points.

Show that if K is a compact convex set in \mathbb{R}^n whose extreme points form a closed set, then every point in K is in the convex hull of n + 1 of its extreme points. Show by means of an example that we cannot replace n + 1 by n.

If K is a compact convex set in \mathbb{R}^n , is it true that K is the convex hull of finitely many extreme points? Give a proof or counterexample.

UNIVERSITY OF

 $\mathbf{4}$

Define the space of distributions $\mathcal{D}'(\mathbb{T})$ and the notion of convergence in distribution. Define the derivative T' of a distribution T showing that is is indeed a distribution. Characterise the members of $\mathcal{D}'(\mathbb{T})$ in terms of their Fourier series.

State and prove a necessary and sufficient condition for a distribution T to be the derivative of another distribution.

Define the *support* of a distribution showing that it is well defined object. (You may use any theorems you wish on partitions of unity provided they are clearly stated.) Show that if T is a distribution $\operatorname{supp} T' \subseteq \operatorname{supp} T$ and give an example where $\operatorname{supp} T' \neq \operatorname{supp} T$.

Characterise the distributions whose support is a single point. (If you use any form of Taylor's theorem you should prove it.)

Show that given any $n \ge 0$ and and $\epsilon > 0$ we can find a $g \in \mathcal{D}$ such that $\operatorname{supp} g \subseteq [-\epsilon, \epsilon], g^{(n)}(0) = 1$ and $||g^{(r)}(t)| \le \epsilon$ for all t and all $0 \le r \le n$.

Let δ_x have its usual meaning and let $a_j \in \mathbb{C}$ $[j \ge 1]$.

(i) Show that $\sum_{j=1}^{m} a_j \delta_{1/j}$ converges in distribution as $m \to \infty$ if $\sum a_j$ is absolutely convergent.

(ii) If E is a closed subset of \mathbb{T} , is it true that there always exists a distribution T with supp T = E? Give a proof or counter example.

END OF PAPER