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Let u(x, t) solve the following initial-boundary value problem:

ut = uxx + αux, 0 < x < ∞, 0 < t < T, α > 0,

u(x, 0) = u0(x), 0 < x < ∞,

ux(0, t) − βu(0, t) = g(t), 0 < t < ∞, β > 0,

u(x, t) decays sufficiently fast for all t as x → ∞,

where T is a positive constant, g(t) is a smooth function, u0(x) decays as x → ∞, and

g(0) =
du0

dx
(0)− βu0(0).

(i) Show that the above PDE can be rewritten in the form

[

e−ikx+(k2−iαk)tu
]

t
=

[

e−ikx+(k2−iαk)t(ux + αu+ iku)
]

x
.

(ii) Assuming that the solution of the above initial-boundary value problem exists, derive
a representation of the solution. [You may use Jordan’s lemma without proof.]

(iii) Prove that the solution u(x, t) obtained in (ii) satisfies the boundary condition at
x = 0.

(iv) Explain why the above problem cannot be solved by a classical x-transform.
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Assume that there exists a function q(x, y) which satifies the modified Helmholtz equation
in the semi-strip 0 < x < ∞, 0 < y < l, which decays as x → ∞ for all 0 < y < ∞, and
which is sufficiently smooth all the way to the boundary.

(i) Show that the modified Helmholtz equation

∂2q

∂x2
+

∂2q

∂y2
− 4λq = 0, λ > 0,

can be written in the form

[

e−(ikz+
λ
ik
z̄)(qz + ikq)

]

z̄
+

[

e−(ikz+
λ
ik
z̄)

(

qz̄ +
λ

ik
q

)]

z

= 0, k ∈ C, z = x+ iy.

(ii) By performing a spectral analysis of the differential form

d
[

e−(ikz+
λ
ik
z̄)µ(z, z̄, k)

]

= e−(ikz+
λ
ik
z̄)
[

(qz + ikq)dz −

(

qz̄ +
λ

ik
q

)

dz̄

]

, k ∈ C,

derive an integral representation for the solution of the modified Helmholtz equation in
the interior of the above semi-strip.

3

Let f(z, z̄) be a continuously differentiable function for z in the compact domain D ⊂ R
2,

whose smooth boundary is denoted by ∂D.

(i) Derive the Pompeiu formula. [You may use Poincaré’s lemma without proof.]

(ii) Let Cρ denote the disc |z| 6 ρ and let m,n be non-negative integers. Use Pompeiu’s
formula to compute explicitly the integral

1

2iπ

∫ ∫

Cρ

ζmζ̄n

ζ − z
dζ ∧ dζ̄, m > n.
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